Sanskrit Knowledge-based Systems: Annotation and
Computational Tools

A thesis submitted
in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Hrishikesh Rajesh Terdalkar
14111265

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY KANPUR
June, 2023

CERTIFICATE

It is certified that the work contained in the thesis titled Sanskrit Knowledge-based
Systems: Annotation and Computational Tools, by Hrishikesh Raj esh Terdalkar,
has been carried out under my supervision and that this work has not been submit-

ted elsewhere for a degree.

Prof. Arnab Bhattacharya

Department of Computer Science and Engineering

IIT Kanpur

june, 2023

iii

DECLARATION

This is to certify that the thesis titled Sanskrit Knowledge-based Systems: An-
notation and Computational Tools has been authored by me. It presents the re-
search conducted by me under the supervision of Prof. Arnab Bhattacharya.

To the best of my knowledge, it is an original work, both in terms of research con-
tent and narrative, and has not been submitted elsewhere, in part or in full, for a
degree. Further, due credit has been attributed to the relevant state-of-the-art and

collaborations (if any) with appropriate citations and acknowledgments, in line with

.4

Signature

established norms and practices.

Name: Hrishikesh Rajesh Terdalkar
Programme: PhD

Department: Computer Science and Engineering
Indian Institute of Technology Kanpur

Kanpur 208016

ABSTRACT

Name of Student: Hrishikesh Rajesh Terdalkar Roll No.: 14111265
Degree for which submitted: Doctor of Philosophy
Department: Computer Science and Engineering

Thesis Title: Sanskrit Knowledge-based Systems: Annotation and

Computational Tools

Name of Thesis Supervisor: Prof. Arnab Bhattacharya

Month and Year of Thesis Submission: June, 2023

A Knowledge Base (KB) is a representation of real-world knowledge in a partic-
ular domain in a computer system. Knowledge Graphs (KG) are KBs that use graph
as the underlying data structure. Knowledge-based systems are software that uti-
lize knowledge bases to solve problems. In the field of Natural Language Processing
(NLP), Question Answering (QA) is a problem of finding answers to natural language
questions posed by humans. KGs are an integral part of addressing the problem of
question answering. Difficulty of constructing knowledge graphs depends greatly on
the language and the resources available, such as datasets, tools and technologies.

Sanskritis a classical language with a vast amount of written literature on a wide
variety of topics. However, most of this literature is not available in a format that is
readily usable by computer systems. As a result, from a computational perspective,
Sanskrit is still considered a low-resource language.

In this thesis, we make contributions towards the ultimate goal of question an-
swering in Sanskrit through construction of various knowledge-based systems in
Sanskrit. We first present a framework that attempts to answer factual questions

through an automated construction of KGs. We highlight the shortcomings and lim-

Vi

itations of the state-of-the-art of Sanskrit NLP. The scarcity of appropriate datasets
poses a significant challenge in the development and evaluation of automated sys-
tems for knowledge graph construction. Human annotation plays an important role
for the creation of such datasets. There is also a need for annotation tools with task-

specific and intuitive interfaces to simplify the tedious task of manual annotation.

We present Sangrahaka, an annotator-friendly, web-based tool for ontology-driven
annotation of entities and relationships towards the construction of knowledge graphs.
It also supports querying. The tool is language and corpus-agnostic but customizable
for specific needs. We demonstrate the usefulness of the tool through a real-world
annotation task on Bhavaprakasanighantu, an Ayurveda text. We showcase a care-
fully constructed extensive ontology suitable for this task, resulting in annotations
that contribute to the development of a knowledge graph and querying framework.

These contributions are based on three chapters from Bhavaprakasanighantu.

Then, we present Antarlekhaka, a general purpose multi-task annotation system
for manual annotation of a comprehensive set of NLP tasks. The system supports
annotation towards multiple categories of NLP tasks: sentence boundary detection,
canonical word ordering, token annotation, token classification, token graph, sen-
tence classification and sentence graph. The annotation is performed in a sequential
manner for small logical units of text (e.g., a verse). We highlight the utility of the tool
through the application of the tool for the annotation of Valmiki Ramayana, resulting
in datasets for NLP tasks of sentence boundary detection, canonical word ordering,

named entity recognition, action graph construction and co-reference resolution.

Both Sangrahaka and Antarlekhaka are presented as full-stack web-based soft-
ware to support distributed annotation. They are designed to be easily configurable,
web-deployable, customizable and with a multi-tier permission system. They are
actively being used in real-world annotation tasks. The annotator-friendly and in-
tuitive annotation interfaces of these tools have received positive feedback from the

users, and they outperform other annotation tools in objective evaluation.

Sanskrit text corpora have undergone large-scale digitization efforts using OCR

vii

technology, inadvertently leading to the introduction of various errors. In this the-
sis, we present Chandojianam, a system for identifying and utilizing Sanskrit meters.
Apart from its core functionality of meter identification, the system also enables
finding fuzzy matches based on sequence matching, thereby facilitating the correc-
tion of inaccuracies in digital corpora. The user-friendly interface of Chandojianam
displays the scansion, a graphical representation of the metrical pattern. Addition-
ally, the system supports meter identification from uploaded images through the
utilization of optical character recognition (OCR) engines. The text can be processed

in either line-by-line mode or verse-by-verse mode.

Finally, as part of our research contribution, we offer an extensive range of web-
interfaces, tools, and software libraries specifically designed to highlight and uti-
lize the computational aspects of Sanskrit. This diverse compilation includes Jaa-
nasangrahah, a comprehensive web-based collection of various computational appli-
cations dedicated to the Sanskrit language. The overarching aim of Jianasangrahah
is to present the features of the Sanskrit language in an accessible manner, even
for enthusiastic users with limited Sanskrit backgrounds. Within this collection,
you will find Sankhyapaddhatih, a web-interface that encompasses three ancient nu-
meral systems, enabling the representation of numbers as text. Additionally, we
offer Chandojiianam, a system for Sanskrit meter identification and utilization, as
well as Varnajiianam, a utility pertaining to varna, a phonetic unit of the Sanskrit
language. Furthermore, our contributions extend to a Telegram bot designed to as-
sist learners in comprehending Sanskrit grammar. Lastly, we have developed a set
of Python libraries to aid programmers in working with Sanskrit corpora. These
include PyCDSL, a Python library and a Command Line Interface (CLI) to simplify
the processes of downloading, managing, and accessing Sanskrit dictionaries, Her-
itage.py, a Python interface to The Sanskrit Heritage site and sanskrit-text, a library
for the manipulation of Sanskrit alphabet. Collectively, these resources serve as cat-
alysts for encouraging and enabling a wider audience to delve into the richness of

Sanskrit and its profound cultural heritage.

viii

In conclusion, this thesis addresses the challenges and opportunities in the devel-
opment of knowledge systems for Sanskrit, with a focus on question answering. By
proposing a framework for the automated construction of knowledge graphs, intro-
ducing annotation tools for ontology-driven and general-purpose tasks, and offering
a diverse collection of web-interfaces, tools, and software libraries, we have made
significant contributions to the field of computational Sanskrit. These contributions
not only enhance the accessibility and accuracy of Sanskrit text analysis but also
pave the way for further advancements in knowledge representation and language
processing. Ultimately, this research contributes to the preservation, understand-

ing, and utilization of the rich linguistic information embodied in Sanskrit texts.

Acknowledgements

I am humbled and immensely grateful to all the individuals and organizations who
have played pivotal roles in the completion of this thesis. Their support, guidance,
and contributions have been instrumental in shaping this work and have enriched

my research journey. I would like to express my heartfelt gratitude to each of them.

First and foremost, I owe a great debt of gratitude to my thesis advisor and guide,
Prof. Arnab Bhattacharya, for accepting me as his student, for his invaluable in-
sights, esteemed guidance and constant support throughout my research journey. I
am truly grateful for his patience and support during the challenging times. His ex-
pertise and encouragement have not only fueled my passion but have also shaped

the direction and outcomes of this thesis.

I extend my thanks to Dr. Kripabandhu Ghosh, Dr. Sai Susarla, Prof. Anil Kumar
Gourishetty, Dr. Amrith Krishna, Prof. Amba Kulkarni, Prof. Pawan Goyal and Jiv-
nesh Sandhan for their discussions, insightful feedback and collaborations during

various phases of my research.

I am grateful to the annotators who actively participated and made significant
contributions to the annotation tasks. I would like to extend my thanks to Vishakha
Deulgaokar for sharing her valuable insights and dedicated involvement as an an-

notator.

My sincere appreciation goes to all the professors at the Department of CSE at
IIT Kanpur for their help, guidance, insightful interactions, and encouragement on
various occasions. Their expertise and support have been invaluable. I would like

to mention Prof. R K Ghosh, Prof. Satyadev Nandakumar, Prof. Amey Karkare,

Prof. Subhajit Roy, Prof. Sumit Ganguly, Prof. Rajat Mittal, Prof. Indranil Saha,
Prof. Piyush Rai, Prof. Nisheeth Srivastava, Prof. T V Prabhakar, Prof. Vinay P

Namboodiri, Prof. Sandeep Shukla, and Prof. Sruti Srinivasa Ragavan.

I would like to express my gratitude to all the supporting staff in the institute in-
cluding but not limited to the CSE Department, Hall 4, and Hall 8 for their assistance

and contributions, which have made my life at the institute easier.

I am thankful to the anonymous reviewers for their valuable comments and sug-

gestions, which have significantly enhanced the quality of this work.

I would like to express my deep appreciation to Central Sanskrit University and
our Sanskrit teacher, Pralay Manna, for their invaluable contribution in enhancing
our understanding of the language. I am truly grateful to AV S D S Mahesh and Dr.
Chaitali Dangarikar for sharing their profound insights on various Sanskrit-related
topics. Furthermore, I want to sincerely appreciate the Vyoma Linguistic Labs Foun-
dation for their resolute dedication to reviving and preserving Sanskrit through tra-
ditional teaching methods. In particular, I am thankful to teacher Sowmya Krishna-
pur for introducing me to the fascinating world of Vyakarana Shastra and providing

me with invaluable guidance along the way.

I am grateful to my friends, relatives and teachers who have been a part of my
educational journey and have provided guidance, motivation, and encouragement

along the way.

I am immensely grateful to Garima Gaur, Keerti Chaudhury, Rujuta Pimprikar,
and Umair Ahmed for their incredible enthusiasm, curiosity, guidance, and support.
Whether we were attending conferences, engaging in random discussions in the can-
teen, playing cards, or tackling TA duties, those moments have truly enriched my
experience at IITK. I would also like to give a special shout-out to Shubham Sahai
and Adarsh Jagannatha for their camaraderie, helpfulness, and active participation
in various group activities. The memories of our fun-filled ‘chai pe charcha’ ses-
sions with Tejas Gandhi and Saurabh Srivastava always bring a smile to my face.

Those lively conversations, filled with gossip and valuable insights, added an excit-

xXi

ing touch to our days. Additionally, I would like to mention Arvapalli Sai Susmitha,
Aakankshka Verma, Sumit Lahiri, and Pankaj Kumar Kalita for the numerous mean-

ingful interactions.

I am filled with deep gratitude for the continual support and friendship of Awan-
ish Pandey. Throughout my journey of PhD, his presence has been a beacon of light,
guiding me through both curricular and extracurricular activities. The moments we
shared in KD106, delving into discussions on politics, science, stocks, exams, movies,
songs, and every conceivable topic, have undoubtedly been some of the most cher-
ished and treasured moments of my life at IITK. The laughter we’ve shared, the ob-
stacles we’ve conquered, and the countless moments of camaraderie have left an

indelible mark on my heart.

My companion since the undergraduate years, Abhishek Dang, has had a pro-
found impact on my life. Spanning over more than 15 years, our friendship has been
a constant that not many could understand. Together, we have embarked on count-
less adventures, be it our sessions of playing or discussing DotA, the joyous card and
board game nights, the exhilarating cycling trips, or the thought-provoking discus-
sions. My association with Abhishek holds a special place in my heart. I extend my
sincere thanks for being a constant source of genuine advice that has guided me

through various ups and downs.

No words of thanks can be enough to express my heartfelt gratitude to my wife,
Shubhangi Agarwal, for her unwavering support, understanding, and patience through-
out this endeavor. She has been my rock in this PhD journey. Together, we have
experienced the highs and lows, the challenges and triumphs, and she has been an
active part in all aspects of my academic and non-academic pursuits. In times of
uncertainty and fatigue, she has provided kind encouragement and a listening ear,
helping me navigate through the hurdles with steadfast determination. Her pres-

ence has brought stability to my life, and I am forever grateful to her.

Last, but not the least, I am truly indebted to my parents, Vinda and Rajesh

Terdalkar, for their boundless love, unconditional support, and steadfast belief in

xii

me. They have always been there for me, through thick and thin. I attribute all my
achievements to their selfless sacrifices. I know that I can always count on their love
and encouragement, and I am forever grateful for everything they have done for
me. I hope that I can make them proud. I would also like to remember the treasured
memories of my late grandparents, Sarita and Ratnakar Terdalkar. Their profound
influence has shaped not only my character but also the trajectory of my academic

pursuits. Their love and legacy will continue to live on in me.

To Aai and Baba

(Vinda and Rajesh Terdalkar)

Contents

Acknowledgements ix
List of Tables xxiii
List of Figures XXV
1 Introduction 1
1.1 Motivation o o o e e e e e e e e e e e e e 2
1.2 Challenges e 3

1.3 Manual Annotation o i e e e 5
1.4 Related Work o e e e 9

1.5 Objectives o o e 10
1.5.1 Question Answering System for Sanskrit 10

1.5.2 Intuitive and Accessible Annotation Tools 10

1.5.3 User-Centric Solutions for Sanskrit Awareness and Research . . 11

1.6 Contributions e 11
1.7 Significance 16
1.8 Limitations o e e e e 17
1.9 Outline e 18
2 Sanskrit Question Answering Framework 21
2.1 Introduction e 21
2.2 Proposed Framework 23

2.2.1 Knowledge Graphs(KG) 23

2.3

2.4

2.5

2.6

xXvi

2.2.2 Triplets e 24
2.2.3 QUESLIONS i o e e e e e e e e e 25
Construction of Knowledge Graph 27
2.3.1 Pre-ProcessingofText 27
2.3.2 Identifying Relationship Words 29
2.3.3 Identification of Triplets 29
2.3.4 Enhancement of Relationships 31
Question ANSWErING v v i v i e e e e e e e e 32
241 Identifying Triplets 32
242 Enhancing Triplets 33
243 QueryPattern 34
Technical Texts e 34
2.5.1 Structure e e 34
2.5.2 PropertyWords 36
2.5.3 Synonym Sloka Identification 37
2.5.4 Identifying SynonymousNouns 38
Experimentsand Results, 38
2.6.1 Datasets e e 39
2.6.2 Knowledge Graph from Ramayana and Mahabharata 40

2.6.21 Questions 40

2.6.2.2 Performance 40
2.6.3 Analysisof Wrong Answers. 41

2.6.3.1 ParsingErrors 41

2.6.3.2 AnsweringErrors, 42

2.6.3.3 Correct Answers despite Wrong Parsing 43
2.6.4 Analysis of Errorsin KG Triplets 43

2641 TypesofErrors., 44

2.6.4.2 Extracting Triplets 46

2.6.4.3 Analysis of Incorrect Triplets 47

Xvii

2.6.5 Synonym Identification from Bhavaprakasanighantu 48
2.6.5.1 (lassification 48

2.6.5.2 Synonym Identification, 49

2.7 SUMMATY v vt e e e e e e e e e e e e e e e e 51
3 Sangrahaka: Annotation and Querying Tool for Knowledge Graphs 53
3.1 Sangrahaka Software 54
3.1.1 Architecture 55
3.1.1.1 Workflow 56

3.1.2 DataFormat 57
3.1.21 CorpusFormat 57

3.1.22 QueryTemplate 58

3123 Backend oo 59

3.1.2.3.1 WebFramework 59

31232 Data 59

3.1.2.3.3 Knowledge Graph 60

3.1.2.3.4 Natural Language Query Templates 60

3.1.23.5 Configuration 61

3.1.23.6 UtilityScripts 61

3.1.24 Frontend 61

3.1.2.4.1 Corpus Viewer Interface 61

3.1.2.4.2 Annotator Interface 62

3.1.24.3 QueryInterface. 62

3.1.2.44 Graph Query Builder Interface 62

3.1.2.4.5 Graph Browser Interface 63

3.1.24.6 Admin Interface 63

3.1.2.4.7 Ontology Creation 64

31248 Curation 64

3.1.2.5 FaultTolerance. 65

3.1.3 Evaluation 65

xXviii

3.1.3.1 Subjective Evaluation 66

3.1.3.2 Objective Evaluation 66

3.2 Semantic Annotation of Semi-structured Ayurveda Text 68
3.21 Introduction 68
3.2.1.1 Contributions. 71

3.21.2 Outline 72

3.2.2 Motivation for Manual Annotation 73
3.2.2.1 Word Segmentation 73

3.2.2.2 Morphological Analysis 74

3.2.2.3 Other LinguisticTasks 74
3.2.2.4 Semantic Information Extraction 75

3.2.25 Needfor Annotation 77

323 COrpuS. . . . v vt e e 79
3.2.3.1 Sample of Text from Dhanyavarga 81

3.24

3.2.5

3.2.6

3.2.3.2 Poetry-to-Prose Conversion of Verses from Table 3.8 . . 81

Ontology e 82
Annotation Process o e 84
3.2.5.1 Entity Annotation 85
3.2.5.2 Relation Annotation 86
3.2.5.3 UnnamedEntities 87
3.2.5.4 Auto-complete Suggestions 88
3255 Curation. 89

3.2.5.5.1 Equivalent Entities 89

3.2.5.5.2 Inconsistent Node Categories 90

3.2.5.5.3 Missing Node Categories 90
3.2.5.6 Symmetric Relationships 90
Querying e e 92
3.26.1 QueryTemplates 92

3262 QUEIrYANSWEIrS v v v vt ittt it e e o 93

Xix

3.3 SUMMATY o e e e e e e e e e e e e e 94
4 Antarlekhaka: Comprehensive Natural Language Annotation Tool 99
4.1 Antarlekhaka Software 100
4.1.1 Architecture 101
4111 Workflow 102

41.1.2 Data e e e e e e 103

41.1.3 Interfaces 106

4.1.1.3.1 Sentence Boundary Detection 106

4.1.1.3.2 Canonical WordOrder. 107

4.1.1.3.3 Token Annotation 108

4.1.1.3.4 Token Classification 108

41135 TokenGraph 109

4.1.1.3.6 Token Connection 110

4.1.1.3.7 Sentence Classification 111

4.1.1.3.8 SentenceGraph................... 112

4.1.1.4 Language Independence 113

4115 Schema o .. 113

41151 Tasks. 114

41152 Ontology. 114

41153 Annotations. 115

4.1.1.6 Pluggable Heuristics 115

4117 EXport. 116

4.1.2 Evaluation 117

4.2 Potential for NLPResearch 118
4.3 Case Study: Annotation of Valmiki Ramayana 119
4.3.1 Sentence BoundaryDataset. 120
4.3.2 Canonical Word Ordering Dataset 121
4.3.3 Named Entity Recognition Dataset 121

434

Co-reference Resolution Dataset 121

4.3.5 Action Graph Dataset

44 Summary

5 Chandojiianam: Sanskrit Meter Identification and Utilization

5.1 Introduction
5.1.1 Motivation
5.1.2 Background
5.1.3 RelatedWork
5.14 Contributions

5.2 The Chandojhanam System
5.2.1 Chanda Definitions
522 Input..............

5.2.3 TextProcessing

5.2.4 Meter Identification Algorithm

5.2.4.1 Direct Matching . .

5.2.4.2 Fuzzy Matching . .

5.2.4.3 Verse Processing . .

525 Output.
52.6 Utiity

5.3 Evaluation for Error Correction . .
531 Corpus.............
532 Results.............
5.3.3 Error Analysis

54 Summary

6 Miscellaneous Computational Tools for Sanskrit

6.1 Jhanasangrahah: Computational Interfaces

6.1.1 Sankhyapaddhatih
6.1.1.1 Katapayadi Sankhya

6.1.1.2 Aryabhatiya Sankhya

121

122

123

124

124

125

126

127

129

129

132

133

135

136

137

139

140

141

142

142

143

144

146

147

xxi

6.1.1.3 Bhatasankhya 152

6.1.2 Varnajfianam e 153

6.2 Vaiyyakaranah: A Sanskrit Grammar Bot for Telegram 154
6.3 Python Libraries e 157

6.3.1 PyCDSL: A Programmatic Interface to Cologne Digital Sanskrit

Dictionaries it e e e e e 157

6.3.2 Heritage.py: Python Interface to The Sanskrit Heritage Site . . . 159

6.3.3 sanskrit-text: Sanskrit Text Utility Functions 159

6.4 SUMMATY o i ittt e e e e e e e e e e e e e 160

7 Conclusions 161
7.1 KeyContributions e 162
7.2 Future Work e e 163
Publications 165

References 167

List of Tables

2.1 Top-10 most frequent words, nouns and their frequencies from Bha-

vaprakasanighantu. o L o oo 37
2.2 Featuresofasloka.. 38
2.3 Statistics of the various datasetsused. 39
2.4 Statistics of the knowledge graphs for the human relationships. 40
2.5 Performance of the question answeringtasks. 41
2.6 Sloka 25, 26, 27 from Adhyaya 67 of Adi Parvan in Mahabharata. 43
2.7 AnalysisofSloka 25. vt i 44
2.8 AnalysisofSloka26. v v vt e 45
2.9 AnalysisofSloka27. 45
2.10 Filters for extracting triplets. 46
2.11 Training and testing scenarios on Bhavaprakasanighantu. 48
2.12 Performance of classifiers in identifying synonym éloka. 49
2.13 Examples of errors in classification (scenario S3). 49
2.14 Group coverage in synonym pair identification. 49

2.15 Sloka 96 from Adhyaya 1 of Bhavaprakasanighantu and its sandhi-samasa

SPlit. . . e 50
2.16 Analysis of SIoka 96. 51
2.17 Performance of finding synonym pairs. 51
2.18 Example of wrong pairs from Adhyaya 1 of Bhavaprakasanighantu. . . . 51
3.1 Feature Comparison Sangrahaka with Various Annotation Tools 54

3.2 Rolesand Permissions i e e e e e e e e e 56

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.9
3.9

4.1

4.2

5.1
5.2

5.3

xXXiv

List of important configuration options and their explanation 60
Annotation tasks performed using Sangrahaka 65
Annotator Ratings for Sangrahaka across various metrics 66
Evaluation of Sangrahaka in comparison with other annotation tools

using objective evaluation criteria L. 67

Semantic variations due to richness of Sanskrit through examples from

Dhanyavarga. o 76
First 10 verses from Dhanyavarga of Bhavaprakasanighantu 81
Natural Language Query Templates 95
Natural Language Query Templates 96
Natural Language Query Templates 97

Comparison of Antarlekhaka with various annotation tools based on
primary features and supportedtasks 100
Evaluation of Antarlekhaka in comparison with other annotation tools
using objective evaluation criteria. Each feature is evaluated on a ternary

scale of 0, 0.5 and 1, where 0 indicates absence of the feature, 0.5 indi-

cates partial support and 1 indicates full support for the feature. 118
Feature comparison of extant meter identification systems 127
Chanda Definitions specification format 130

Error tolerance of meter identification systems. (Versions are WS: Wik-
isource, GO: Google OCR, TO: Tesseract OCR, SD: sanskritdocuments.org,
GR: GRETIL.) Chandojiianam is able to detect correct chanda from erro-

neous verses 98.2% of thetimes. o ... 145

List of Figures

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Overall framework of thesystem.

Workflow of Admin, Annotator and Querier roles and their interaction
with each other. Corpus creation, ontology creation, annotation, graph
creation, graph querying are the principal components.
Corpus Viewer, Entity Annotator, Relation Annotator, Query Interface,
Graphical Result Interface, Tabular Result Interface
Graph Browser Interface,
Curation Interfaces for Editing Node Label and Relation Label
Wordcloud created using comments provided by users in the survey
Example of a Knowledge Graph (KG).
Workflow of semantic annotation for KG construction and querying . .
Dependency parse trees for sentences from §loka 2.
Example of hierarchical node ontology for a single top-level category

‘Property’ (Gunah).

3.10 Sample text from Dhanyavarga with linguistic information.

3.11 Modified annotation interface with multi-transliteration-based sugges-

27

55

3.12 Sample output using query interface featuring Sanskrit query templates 94

4.1

Workflow of Administrator and Annotator roles and their interaction
with each other. Corpus upload, task setup, annotation and visualiza-

tion are the principal components.

XXVi

4.2 Example of CONLL-U Data from Digital Corpus of Sanskrit. The columns
displaying word index, word form, lemma, universal parts-of-speech
tag, language-specific parts-of-speech tag, and morphological features
arevisible. 104

4.3 Task management interface, a part of administrative interface. Tasks

can be added, edited, activated, deactivated and reordered here. 105
4.4 Sentence Boundary Annotation Interface 106
4.5 Word Order Annotation Interface 107
4.6 Token Annotation Interface: Lemmatization 108
4.7 Token Classification Interface: Named Entity Recognition 109

4.8 Token Graph Interface for a sample task of Action Graph. The second
interface shows the visualization of the graph 110
4.9 Token Connection Interface for a sample task of Co-reference Resolution111
4.10 Sentence Classification Interface 111
4.11 Sentence Graph Interface 112
4.12 Annotation Interface: Corpus area shows text splitinto small units, and
annotation area highlights various annotation task tabs 113
4.13 Entity Relationship Diagram showing selective tables: Task, User, To-
ken, Sentence Boundary Annotation, Word Order Annotation, Token
Graph Annotation, Token Graph Relation Ontology. Tables are color
coded. Yellow: Annotation Tables, Orange: Ontology Tables, Blue: Cor-
pus Tables, Pink: User Tables, Green: Task Information Table. The an-
notation table for ‘Sentence Boundary’ task is highlighted, showing the

references incoming (red) and outgoing (green) references to other ta-

bles. . . . 114
4.14 Export Interface: NER data in the standard BIO format 116
5.1 Workflow of the Chandojignam system 129
5.2 Generic chanda definition format 130

5.3 Upload a screenshot of a verse to Chandojiianam for meter identification133

5.4

5.5

5.6

5.7

6.1

6.2

6.3

6.4

6.5

6.6

6.7

xXxvii

Meter identification with fuzzy matching and suggestions 137
Meter identification from a verse in (a) Line mode and (b) Verse mode . 140
Fuzzy matches in (a) Line mode and (b) Versemode 140

Meter identification from other Indian languages, e.g., (a) Marathi (b)

Telugu e 142
Sankhyapaddhatih: Katapayadi Encoding and Decoding 149
Sankhyapaddhatih: Bhatasankhya Encoding and Decoding 151
Varnajiianam: Splitting varnas (varnavicchedah) 153
Varnajiianam: Pronunciation information Uccaranasthanayatna 154
Stem Finder and Declension Generator 155
Root Finder and Conjugation Generator 156

Usage Instructionsfor CLI 158

Chapter 1

Introduction

3 7 f& T Teet ufaafig faea

In this world, there is nothing as purifying as Knowledge.

Srimadbhagavadgita 4.38

A Knowledge Base (KB) serves as a repository of real-world knowledge within
a specific domain, encompassing domain-specific information, factual data, rules,
and procedures that are employed to represent and address problems in a particu-
lar field or domain. Knowledge Graphs (KG), on the other hand, utilize a graph struc-
ture as the foundational data representation for KBs. Knowledge-based systems are
software applications designed to utilize knowledge bases for solving problem:s.

Natural language refers to the language used by humans to communicate with
each other, such as Spanish, English, Hindi, etc. It is characterized by its complexity,
flexibility, and ambiguity, which makes it challenging for computers to understand
and generate. Natural Language Processing (NLP) is a subfield of Artificial Intelli-
gence (AI) that focuses on enabling computers to process, understand, and generate
natural language [Jurafsky and Martin, 2008, Winston, 1984]. NLP techniques are
used to build a wide range of applications, such as machine translation, sentiment
analysis, speech recognition, text summarization, and question answering. Ques-
tion Answering (QA) is a field of NLP that involves building computer algorithms

that can automatically answer questions posed in a natural language by humans.

The goal of QA is to develop systems that can understand the meaning of a question
and provide a relevant and accurate answer based on a large collection of knowl-
edge sources, such as documents, databases, or other structured and unstructured
data. QA canbe used in a variety of applications, such as virtual assistants, search en-
gines, customer service, and information retrieval systems. The development of QA
systems involves several techniques, including information retrieval, natural lan-
guage understanding, machine learning, and knowledge representation.

Since the introduction of QA task by [Voorhees, 1999], one of the prominent ap-
proaches for QA has been through use of KBs [Hirschman and Gaizauskas, 2001,
Kiyota et al., 2002, Yih et al., 2015]. KGs play a vital role by providing a structured
framework for effective QA [Diefenbach et al., 2018, Gutiérrez and Sequeda, 2021].
The complexity involved in constructing knowledge graphs is heavily influenced by
factors such as the specific language being studied and the availability of diverse

resources, including datasets, tools, and technologies.

1.1 Motivation

Sanskrit (Devanagari: ﬁ?ﬂv_d, IAST': Samskrta) is a classical language with a vast amount
of written literature on a wide variety of topics including but not limited to philos-
ophy, history, mathematics, science and religion. It is considered one of the oldest
and most well-preserved languages in the world, with a rich literary tradition span-
ning several thousand years [Burrow, 2001, Macdonell, 1915]. However, the large
volume of such works and the relative lack of proficiency in the language have kept
treasures in those text hidden from the common man.

Many of the Sanskrit texts are technical in nature; prime examples of which in-
clude Ayurveda (3Tlﬂa'7{) texts such as Bhavaprakasa (M1dUehiRl). The nighantu (ﬁEI'Ug)
portion of Bhavaprakasa is compiled as a glossary of the various substances and their

properties (guna, 7UT). Although the information is generally provided in a format

In this thesis, the International Alphabet of Sanskrit Transliteration (IAST) encoding scheme
is utilized for the romanized format of Sanskrit words. https://en.wikipedia.org/wiki/
International_Alphabet_of_Sanskrit_Transliteration

https://en.wikipedia.org/wiki/International_Alphabet_of_Sanskrit_Transliteration
https://en.wikipedia.org/wiki/International_Alphabet_of_Sanskrit_Transliteration

that enables scholars to study and analyse it systematically, the large volume of such
texts makes it harder for any individual to extract all the information. An automated
system can, therefore, greatly aid this processing of information. However, to the
best of our knowledge, there does not exist any system that can query this knowledge
trove directly and automatically.

While it can be argued that English translations of Bhavaprakasanighantu are avail-
able, and building information retrieval (IR) systems for it is a routine for today’s
IR/NLP tools, there are two main shortcomings of it. First, there are many such
nighantu texts and translations in English are available for only a minuscule number
of them. Second, and more importantly, many of the translations of Sanskrit texts
had been done without a proper understanding of the context and culture in which
they were composed in the first place. They may had been forced to use English
words and phrases that are not a true reflection of the spirit of the original mean-
ing [Malhotra and Babaji, 2020]. A notable case in point, as mentioned by Swami
Vivekananda [Vivekananda, 2019], is the word sraddha ($1€]), for which the English
translation “regards” is not enough. Thus, it is always best to rely on the original
language. The need of the hour, hence, is to use natural language processing (NLP)
of Sanskrit itself to understand the texts in Sanskrit.

This research aims to contribute to the development of knowledge systems in
Sanskrit towards the ultimate goal of question answering. Overall, the thesis presents
a comprehensive approach to addressing the challenges of developing knowledge
systems in Sanskrit and provides a set of tools and resources that can be used by

researchers and practitioners in the field of Sanskrit NLP.

1.2 Challenges

Unraveling information from Sanskrit texts in a targeted and systematic manner can
not only help in enhancing the knowledge systems but can also revive an interest
in the language. Unfortunately, most of this literature is not available in plain text

format that is readily usable by computer systems. As a result, from a computational

perspective, Sanskrit is still considered a low-resource language. We bring to the
fore multiple challenges in processing of Sanskrit texts arising from the complexity

and intricacy of Sanskrit as well as limitations of state-of-the-art techniques.

First, the state of the art of natural language processing in Indian languages, un-
fortunately, is not as advanced as that in English or some other European languages
[Kurian, 2014, Harish and Rangan, 2020]. Indian languages, and in particular San-
skrit, are morphologically richer. Therefore, tasks such as lemmatization and parts-

of-speech tagging are harder and more error-prone in these languages.

Second, some technical texts use their own jargon where certain words may be
used in a specific meaning. For example, Astadhyayi, a work on Sanskrit grammar by
Panini uses specific combinations? of grammatical cases (vibhakti) to denote which

action is to be performed.

Third, names in Sanskrit are meaningful words and, therefore, identifying named
entities is particularly hard. An interesting example in Ramayana is janaka (Si<h),

which means “father” in general, but is also the name of a prominent character.

Fourth, synonyms are often used to refer to the same person. In many cases,
higher-order grammar rules may be required to parse the meaning of a word and
understand that it is a synonym. For example, it is not mentioned anywhere in the
Ramayana text that Dasarathi refers to the son of Dasaratha and, hence, mostly used
as a synonym to Rama. However, Sanskrit grammar rules make it clear to someone
who understands the language. Unfortunately, automatic language processing tools
are incapable of using such higher-order rules at present. Moreover, even if we
somehow infer that Dasarathi means ‘the son of Dasaratha’, it is not evident which son
of Dasaratha it specifically refers to. Another example is that of the word Raghava,
signifying a descendant of Raghu, which is used in different contexts in Ramayana to

denote both Rama and Dasaratha. Similarly, the term Bharata is context-dependent

*The presence of nominative (prathama), genitive (sasthi) and locative (saptami) cases in the same
sentence might not convey any special meaning in a normal text, but, in Astadhyayi, it specifies a
process to be followed to transform words, e.g., rule 6.1.77 from Astadhyayi (iko yanaci, 3! JUT)
contains words ikah (sasthi), yan (prathama), aci (saptami), which is to be interpreted as “an s letter
which is followed by an 3T letter is converted to a corresponding I07 letter”.

in the Mahabharata, as it has been used to refer to both Yudhisthira and Arjuna in
different contexts. The precise referent of these terms greatly relies on the specific
context in which they are employed.

Fifth, the rules of Sanskrit grammar, as we understand them today, are not al-
ways strictly adhered to in ancient texts like the Ramayana. This non-conformity
adds an intriguing dimension to the language and showcases the fluidity and evo-
lution of Sanskrit over time. For instance, in contemporary Sanskrit, following the
rules of Panini, it is customary to use the dative case (caturthi) in combination with
the verb ruc (simple present tense rocate). However, in the Ramayana, we come across
instances such as ‘na rocate mamapyetadarye’® where the genitive case (sasthi) is em-
ployed instead of the dative. There are numerous other examples where the Panini’s
expectations of grammatical cases are violated. These deviations from grammatical
norms pose formidable obstacles for NLP systems, which rely on consistent patterns

and structures to analyse and process text.

1.3 Manual Annotation

Annotation is a process of marking, highlighting or extracting relevant information
from a corpus. It is important in various fields of computer science. A generic ap-
plication of an annotation procedure is in creating a dataset that can be used as a
training or testing set for various machine learning tasks. The exact nature of the
annotation process can vary widely based on the targeted task, though.

Manual annotation plays an important role in NLP. It is particularly important
in the context of low-resource languages for the creation of datasets. In the context
of NLP, annotation often refers to identifying and highlighting various parts of the
sentence (e.g., characters, words or phrases) along with syntactic or semantic infor-
mation. There are a number of syntactic and semantic tasks in NLP which can utilize

annotation by domain experts. Lemmatization, morphological analysis, parts-of-

*Rearranging as per the anvaya order, we obtain, ‘arye, etat mama api na rocate’, where, a genitive
case form of ‘asmad’, ‘mama’, is used instead of a dative case form ‘mahyam’.

speech tagging, named entity recognition, dependency parsing, constituency pars-
ing, co-reference resolution, sentiment detection, discourse analysis etc. are some
examples of such common NLP tasks. Semantic tasks are high-level tasks dealing
with the meaning of linguistic units and are considered among the most difficult
tasks in NLP for any language. The task of question answering is a prominent ex-
ample of semantic tasks. It requires a machine to ‘understand’ the language, i.e.,
identify the intent of the question, and then search for relevant information in the
available text. This often encompasses other NLP tasks such as parts-of-speech tag-
ging, named entity recognition, co-reference resolution, and dependency parsing
[Jurafsky, 2000].

Utilizing knowledge bases is a common approach for the QA task [Voorhees, 1999,
Hirschman and Gaizauskas, 2001, Kiyota et al., 2002, Yih et al., 2015]. Construction
of knowledge graphs (KGs) from free-form text, however, can be very challenging,
even for English. The situation for other languages, whose state-of-the-art in NLP
is not as advanced in English, is worse. As an example, consider the epic Mahab-
harata* in Sanskrit. The state-of-the-art in Sanskrit NLP is, unfortunately, not ad-
vanced enough to identify the entities in the text and their inter-relationships. Thus,
human annotation is currently the only way of constructing a KG from it.

Even aliteral sentence-to-sentence translation of Mahabharata in English, which
probably boasts of the best state-of-the-art in NLP, is not good enough. Consider, for
example, the following sentence from (an English translation of) “The Mahabharata”

[Ganguli et al., 1884]:

Ugrasrava, the son of Lomaharshana, surnamed Sauti, well-versed in
the Puranas, bending with humility, one day approached the great sages
of rigid vows, sitting at their ease, who had attended the twelve years’

sacrifice of Saunaka, surnamed Kulapati, in the forest of Naimisha.

The above sentence contains numerous entities, e.g., Ugrasrava, Lomaharshana,

“Mahabharata is one of the two epics in India (the other being Ramayana) and is probably the
largest book in any literature, containing nearly 1,00,000 sentences. It was originally composed in
Sanskrit.

[na rocate mama-api-etad-arye]4 [yad-raghavo vanam / [arye etad mama api na rocate 14

tyaktva rajyasriyam gacchet] [striya vakyavasam gatah // 2 [yad raghavo rajyasriyam tyaktva vanam gacchet],

viparitas ca vrddhas$ ca visayais$ ca pradharsitah / [viparitah vrddhah ca visayaih pradharsitah ca codyamanah

nrpah kim iva na briyac codyamanah samanmathah // 3]3 samanmathah ca striya vakyavasam gatah nrpah kim iva na brayat]3

[..] [..]

Figure 1.1: Sanskrit verses from Valmiki Ramayana using IAST transliteration scheme. Orig-
inal text appears on the left with sentence boundary markers added. The canonical word
order is shown on the right.

as well as multiple relationships, e.g., Ugrasrava is-son-of Lomaharshana. One of
the required tasks in building a KG for Mahabharata is to extract these entities and
relationships.

Even a state-of-the-art tool such as spaCy [Honnibal et al., 2020] makes numerous
mistakes in identifying the entities; it misses out on Ugrasrava and identifies types
wrongly of several entities, e.g., Lomaharshana is identified as an Organization in-
stead of a Person, and Saunaka as a Location instead of a Person.> Consequently,
relationships identified are also erroneous. This highlights the difficulty of the task
for machines and substantiates the need for human annotation.

Manual annotation of text is a prime necessity for a low-resource language such
as Sanskrit. Further, most of classical Sanskrit literature is in poetry form follow-
ing mostly free word order [Kulkarni et al., 2015], without any punctuation marks.
Therefore, there are certain specialized tasks needed for Sanskrit text processing,
such as sentence boundary detection and canonical word ordering®.

Consider an example from Valmiki Ramayana [Dutt et al., 1891] shown in Fig-
ure 1.1. The sentence boundaries are denoted using square brackets ([and]), and
the verse boundaries are marked by two forward slashes (//). It can be observed that
the sentence boundaries do not coincide with the verse boundaries. In particular,
there may be multiple sentences present in a single verse, or a sentence may extend
across multiple verses. Further, it can be seen on the right side of the arrow that
the canonical word order is different from the order in which words appear in the
original text.

For such languages that either do not use punctuations or use them in a limited

5This is not a criticism of spaCy; rather, it highlights the hardness of semantic tasks such as NER.
5The order which most effectively conveys the intended meaning of a sentence to the reader.

amount, sentence boundary detection is an important task. Additionally, in lan-
guages with relatively free word order, decision of a canonical word order is also
relevant. These two tasks also play a vital role when dealing with the corpora in the

form of poetry, making them potentially relevant for all languages.

It is often required that multiple annotation tasks be performed on the same
corpus. The order in which these tasks are performed can also be relevant due to
interdependence of the tasks. Specifically, whenever’ the task of sentence boundary
detection is relevant, it needs to be performed first before any other annotation task.
For example, one cannot decide the word order of a sentence before first finalizing
the constituent words of a sentence. Same is the case for tasks such as dependency

parsing, sentence classification, discourse analysis, and so on.

An annotation tool is crucial for the successful completion of any annotation task,
and its success relies heavily on its user-friendliness for the annotators. Apart from
this, the tool should be easy to install and should support web deployment for dis-
tributed annotation, allowing multiple annotators to work on the same task from
different locations. The administration interface of the tool should also be intuitive
and should provide easy access to common administrative tasks such as corpus up-

load, ontology creation, and user access management.

The features required from an annotation tool are also dependent on the type of
task it is being used for. For example, for the purpose of knowledge graph focused
annotation, it is important to have capabilities for multi-label annotations and sup-
port for annotating relationships. For linguistic tasks, often there is a need for mul-
tiple annotation tasks to be completed on the same corpus. Further, the tool should
support sequential annotation, which is necessary for a set of annotation tasks that
involve sentence boundary detection. A well-designed annotation tool should pos-
sess all these features to ensure that the annotation process is smooth, efficient, and

accurate.

“corpora without clear sentence boundaries, such as languages with limited punctuation or cor-
pora containing poetry

1.4 Related Work

The thesis explores various aspects within the broader theme of computational meth-
ods and tools for Sanskrit knowledge-based systems. These areas encompass con-
struction of knowledge-graphs, question answering, manual annotation, meter iden-
tification for corpus correction, and software development. As such, each chapter
offers a detailed survey of the related work specific to its subject. We now intro-
duce some literature that holds a central place in the area of Sanskrit computational
linguistics.

Within the realm of Sanskrit corpora, various tools and resources have emerged,
including those related to corpus management [Huet, 2020, Goyal and Huet, 2016,
Huet and Lankri, 2020], dictionaries like Amarakosa [Nair and Kulkarni, 2010], Word-
Net [Kulkarni et al., 2010], and CDSL [cds, 2022], and corpora such as the Digital Cor-

pus of Sanskrit (DCS) [Hellwig, 2021] and GRETIL [gre, 2023].

Given the intricate morphological complexity of Sanskrit, the morphological anal-
ysis of words is a prominent task. Some noteworthy toolkits have been developed
to address this challenge, including Samsaadhanii [Kulkarni, 2016] and The Sanskrit
Heritage Platform [Goyal et al., 2012, Huet, 2005, Huet, 2020, Huet and Lankri, 2020].
Among the key tasks essential for Sanskrit text processing, the resolution of sandhi
and samasa holds paramount significance. In the literature, these tasks are often col-
lectively handled as a unified 'word segmentation’ task [Hellwig and Nehrdich, 2018,
Krishna et al,, 2016]. There also have been efforts to transform a verse into prose

(anvaya) ([Vikram and Kulkarni, 2020, Krishna et al., 2019]).

Explorations in the field of dependency parsing have encompassed the develop-
ment of tagsets [Kulkarni, 2020, Kulkarni et al., 2020] and parsers [Kulkarni, 2021,

Kulkarni et al., 2019, Krishna et al., 2020a, Sandhan et al., 2021].

In recent times, there has been a surge of research endeavors focusing on neu-
ral approaches to address a range of linguistic tasks, including compound identifi-

cation [Sandhan et al., 2019, Sandhan et al., 2022], and the development of architec-

10

tures for diverse joint prediction tasks [Krishna et al., 2020b, Krishna et al., 2021].

1.5 Objectives

Knowledge-based systems in Sanskrit can aid in the preservation and dissemination
of the vast amount of knowledge and literature that exists in the language. Many of
these texts contain valuable information on subjects such as philosophy, science,
medicine, and linguistics, among others. Accessing and utilizing the vast knowledge
and literature present in Sanskrit texts poses significant challenges, primarily due
to the language’s complexity and the scarcity of suitable datasets, tools and tech-
nologies. This thesis strives to contribute to the advancement of knowledge-based
systems in Sanskrit, promoting the dissemination of knowledge for the benefit of

researchers, scholars, and the wider community.

1.5.1 Question Answering System for Sanskrit

The first objective of this thesis is to develop a Question Answering (QA) system
specifically designed for the Sanskrit language. This system will utilize the knowl-
edge graph constructed from Sanskrit texts to provide relevant answers to natural
language questions posed by users. By leveraging automated methods for knowl-
edge graph construction, the QA system will enable users to interactively engage

with the wealth of Sanskrit knowledge.

1.5.2 Intuitive and Accessible Annotation Tools

The second objective is to design and implement task-specific annotation tools that
facilitate the creation and enrichment of knowledge graphs from Sanskrit texts. These
annotation tools will enable researchers and linguists to annotate entities, relation-
ships, and other task-specific linguistic features within the Sanskrit texts. By pro-
viding intuitive and customizable interfaces, the annotation tools will simplify the

otherwise tedious process of manual annotation, thus accelerating the progress of

11

natural language processing in Sanskrit. The tools will be designed to be accessible
to domain experts without requiring any programming knowledge, allowing them

to use the tools effectively regardless of their background in Computer Science.

1.5.3 User-Centric Solutions for Sanskrit Awareness and Research

The third objective is to develop user-friendly interfaces that promote Sanskrit aware-
ness and facilitate research activities. These interfaces will serve as gateways to
Sanskrit knowledge, allowing users to explore and access various resources, includ-
ing the knowledge graph, Sanskrit dictionaries, ancient numeral systems, Sanskrit
grammar and Sanskrit prosody. By providing accessible and interactive interfaces,
we aim to enhance the engagement and participation of users in Sanskrit research

and learning endeavors.

1.6 Contributions

In this section, we will delve into the primary contributions of this thesis, highlight-
ing the significant advancements and insights it brings forth in the field. The contri-
butions have been consolidated and made accessible through the online platform at

https://sanskrit.iitk.ac.in/.

» Sanskrit Question Answering Framework
We present a framework for automated construction of knowledge graphs that
can answer domain specific factual questions in Sanskrit. By leveraging the
vast and varied literature in Sanskrit, including texts such as Mahabharata and
Ramayana, we construct a knowledge graph specific to kinship relationships
found in these texts. We also explore automatic extraction of certain rela-
tionships from Bhavaprakasanighantu, an Ayurveda text. Our natural language
question answering system utilizes this knowledge graph to answer factual
questions, achieving a success rate of approximately 50%. We also conduct a

detailed analysis of the system’s limitations at each step and explore poten-

https://sanskrit.iitk.ac.in/

12

tial avenues for improvement. We identify that the state-of-the-art in Sanskrit
natural language processing is limited by the lack of suitable datasets for the

development and evaluation of such system:s.

* Annotation Tools
We emphasize the importance of human annotation in the creation of these
datasets and the need for task-specific and intuitive annotation tools. We in-

troduce two software tools to fulfill this need.

- Sangrahaka
Sangrahaka is an annotator-friendly, web-based tool for ontology-driven
annotation of entities and relationships that can be used for knowledge
graph construction. It also supports querying using natural language
query templates. Additionally, it has an interfaces for queries in the form
of graphs and a graph browser interface for freely exploring the knowl-

edge graph.

- Antarlekhaka
Antarlekhaka is a versatile general-purpose multi-task annotation sys-
tem that supports the manual annotation of a comprehensive set of NLP
tasks. This system allows users to annotate small units of text with multi-
ple categories of NLP tasks in a sequential manner. The system not only
addresses the standard NLP tasks but also provides support for specific
tasks such as identifying sentence boundaries and establishing canonical
word order, making it especially useful for Sanskrit and other poetic cor-
pora. It supports a total of eight generic categories of annotation tasks,
amounting to the support for a much larger set of NLP tasks. Each cate-
gory of tasks has a unique user-friendly and intuitive interface for anno-

tation, making the tedious task of annotation much more accessible.

Both Sangrahaka and Antarlekhaka are full-stack web-based software with

annotator-friendly interfaces that are easily configurable, web-deployable, and

13

have a multi-tier permission system. Both tools have received mostly positive
reviews in subjective evaluation and outperform other annotation tools in ob-

jective evaluation.

* Knowledge Graphs and Datasets

- Knowledge Graph on Bhavaprakasanighantu
We, through collaboration with Ayurveda experts, have created a rich
and extensive ontology suitable for the annotation of Bhavaprakasanighantu,
an Ayurveda text detailing medicinal substances, their properties and
medical applications. It consists of 300 node labels and 320 relation-
ship labels. We use this ontology and a custom deployment of Sangra-
haka to perform manual annotation on Bhavaprakasanighantu and sub-
sequently construct a knowledge graph (KG), specifically focusing on the
three chapters from Bhavaprakasanighantu, namely, Dhanyavarga, Sakavarga
and Mamsavarga. The constructed knowledge graph contains 1606 enti-
ties and 1707 relationships, capturing the semantics of entity and rela-
tionship types present in the text. To facilitate querying the knowledge
graph, we design 31 query templates that cover common question pat-

terns.

— Task-specific NLP Datasets on Valmiki Ramayana
We have undertaken a large-scale annotation project using Antarlekhaka
to annotate the Sanskrit corpus of Valmiki Ramayana, targeting various
NLP tasks. In this project, we have focused on five tasks relevant to San-
skrit NLP: sentence boundary detection, canonical word ordering (an-
vaya), named entity recognition (NER), and co-reference resolution. With
the support of 26 annotators, we have made significant progress in an-
notating the corpus. So far, we have annotated 883 verses out of the total
18754 verses, completing a total of 3532 annotation tasks. As a result of

this endeavor, we have generated valuable datasets that encompass dif-

14

ferent aspects of the text. This includes 1928 sentence boundary annota-
tions and 1847 canonical word ordering annotations. We have also de-
veloped a rich ontology consisting of 89 categories for NER, and collected
annotations adhering to this ontology, resulting in the identification and
classification of 1644 named entities. Additionally, we have established
2226 co-reference connections across 927 verses. We have shortlisted 44
types of relations relevant for action graphs, which are sentence level
graphs capturing various actions. Based on the annotations adhering to
these relation types, we have also collected 29 action graphs consisting of

250 relations.

* Chandojfianam: Sanskrit Meter Identification and Utilization
Sanskrit prosody, the study of the structure and rules of Sanskrit poetry, can
be used for digitization by helping to identify and correct errors in scanned
or digitized texts. We present Chandojfianam, a Sanskrit meter identification
and utilization system capable of identify meters from text as well as images.
It can also provide approximate and close matches in the case of erroneous

texts opening up the scope for a correction of erroneous digital corpora.

* Miscellaneous Computational Tools and Interfaces
In addition to these software tools, the thesis presents a collection of web-
interfaces, tools, and software libraries related to computational aspects of

Sanskrit.

- Jiianasangrahah
Jianasangrahah is a web-based collection of several computational appli-
cations related to the Sanskrit language. The aim is to highlight the fea-
tures of Sanskrit language in a way that is approachable for an enthusias-
tic user, even if she has a limited Sanskrit background. The applications

part of Jianasangrahah are as follows.

* Sankhyapaddhatih

15

In the ancient India, it was a common practice to represent numeric
values using letters, syllables or words from a natural language. The
primary reason to use such systems is, ease of remembrance of num-
bers. We present a user-friendly web-based interface, Sankhyapad-
dhatih, which implements three such ancient Indian numeral sys-
tems, Katapayadi Sankhya, Aryabhatiya Sankhya and Bhatasankhya. The
core interface for each of the system consists of an encoding inter-
face to encode numeric values into a valid text representation a de-
coding interface to decode any valid text representation into the cor-
responding numeric value.

Varnajiianam

We have developed an interface and a library of utility functions re-
lated to varna (phonetic unit of Sanskrit language) information and

manipulation.

- Vaiyyakaranah
Vaiyyakaranah is a Telegram® bot that offers various tools for a Sanskrit
learner including stem finder, root finder, declension generator, conju-
gation generator, and compound word splitter by making use of extant
Sanskrit linguistic tools. This tool is being used by many Sanskrit learners

and enthusiasts.

- Python Libraries
To facilitate the processing of Sanskrit text and corpora for programmers,
we have developed a set of Python packages that are available on the
Python Package Index (PyPI®). These packages can be installed using the

‘pip install’ command.

* PyCDSL

PyCDSL is a Python library that provides programmer friendly inter-

8https://telegram.oxrg/
*https://pypi.oxrg/

https://telegram.org/
https://pypi.org/

16

face to Cologne Digital Sanskrit Dictionaries (CDSD) [cds, 2022]. The
library serves as a corpus management tool to download, update and
access dictionaries from CDSD. The tool provides a command line
interface (CLI) for ease of search and a programmable interface for
using CDSD in computational linguistic projects written in Python 3.
* Heritage.py
Heritage.py is a Python package that serves as an interface to The
Sanskrit Heritage Site'® [Goyal et al., 2012]. It provides a number of
features for working with Sanskrit, including morphological analy-

sis, sandhi formation, declensions and conjugations.

* sanskrit-text
sanskrit-text is a Python package that provides a variety of utility
functions for working with Sanskrit text in Devanagari script. It in-
cludes functions for syllabification, varna viccheda (breaking down
words into their constituent sounds), pratyahara encoding-decoding,
and uccarana sthana yatna (detailed information about the pronunci-

ation of a word).

1.7 Significance

The significance of this research lies in its contributions towards the development
of computational tools and resources for Sanskrit language processing. While San-
skrit is a central theme of the thesis, it’s important to note that the annotation tools
created are language-agnostic in nature, making them valuable for a wide array of
languages.

The thesis addresses a critical challenge in the field of natural language process-
ing, which is the lack of suitable datasets for developing and evaluating systems for
low-resource languages such as Sanskrit.

The annotated datasets created in this research can be used for developing method-

©https://sanskrit.inria.fr/DICO/index.en.html

https://sanskrit.inria.fr/DICO/index.en.html

17

ologies to perform various computational linguistic tasks in Sanskrit. Additionally,
this research has the potential to increase enthusiasm in Sanskrit as it presents a
user-friendly and accessible approach tolearning and utilizing the language through
various software tools and interfaces.

Overall, the research presented in this thesis has the potential to contribute to
the development of language technologies for low-resource languages, promote the
study and preservation of Sanskrit language, and advance our understanding of lin-

guistics and literature.

1.8 Limitations

As with any research, there are limitations to this work that should be acknowl-

edged. Some of the limitations of this research include:

* Onelimitation of the research is the absence of neural network-based approaches.
Although the proposed framework and tools are effective in their respective
tasks, the use of neural networks could potentially improve the efficiency of
the system. However, the performance of the neural network is unpredictable
and building explainable models is a research area in itself. Further, due to
the lack of suitable training data, the implementation of such approaches in
Sanskrit NLP is currently limited for high-level tasks such as Question Answer-

ing.

» There is a significant amount of research focused on low-level NLP tasks such
asword segmentation, part-of-speech tagging, and dependency parsing. These
tasks are considered foundational in natural language processing and are crit-
ical for building more advanced systems that can perform tasks like machine
translation, text classification, and question answering. While this particular
research may not directly address these low-level tasks, it does contribute to
the field of Sanskrit natural language processing by developing new tools and

techniques for creating datasets and knowledge graphs through manual anno-

18

tation. These contributions can potentially serve as building blocks for future

work on more advanced NLP tasks in Sanskrit and other languages.

» The integration of state-of-the-art NLP tools with annotation tools is a complex
task, primarily due to the diverse specifications and the ever-evolving nature
of such tools. While our current annotation tools do not include this capability,
our plan is to introduce this support. Furthermore, we aim to establish specifi-
cations that will enable future tools to seamlessly conform to our framework,

allowing them to be easily integrated as pluggable components.

1.9 Outline

In this section, we will give a brief overview of the organization of this thesis and

provide a concise summary of the contents of each chapter.

* In Chapter 1, we introduce and motivate the primary problem addressed in
this thesis. We clearly state the research objectives and the contributions, also

touching upon the significance as well as limitations of this research.

* In Chapter 2, we propose a knowledge graph-based framework for automat-
ically building a question answering system in Sanskrit. We also explore the
limitations of such a system and provide a detailed error analysis. We recog-
nize the limitation of the state-of-the-art in Sanskrit natural language process-
ing due to the absence of appropriate datasets for system development and

evaluation. As a result, we emphasize the necessity of manual annotation.

* In Chapter 3, we introduce Sangrahaka, a web-based tool designed for the
annotation of entities and relationships in text corpora. Sangrahaka not only
facilitates the construction of knowledge graphs through annotation but also
supports querying using templatized natural language questions. The tool

is language and corpus agnostic, allowing customization to meet specific re-

19

quirements. We also describe our efforts in the ontology-driven manual an-

notation of Bhavaprakasanighantu, an Ayurveda text.

In Chapter 4, we introduce Antarlekhaka, a comprehensive tool for manual
annotation of various NLP tasks. The tool is Unicode compatible, language-
agnostic, and supports distributed annotation. It includes user-friendly inter-
faces for a wide range of annotation tasks, including two novel tasks: sentence
boundary detection and deciding canonical word order, which are particu-
larly important for analyzing poetic texts. We also present the task-specific
datasets created through manual annotation of several chapters from Valmiki
Ramayana using Antarlekhaka, which provide valuable resources for training

and evaluating machine learning models in low-resource languages.

In Chapter 5, our focus is on Chandojiidnam, a Sanskrit meter identification
and utilization system. The tool incorporates computational techniques and
Sanskrit prosody to identify the meter of a given Sanskrit verse. We highlight
the error-tolerance of Chandojiiatnam owing to its capability to identify close
and approximate matches based on sequence matching, thereby showcasing

the potential for use in error correction of digital corpora.

In Chapter 6, we describe a collection of innovative and user-friendly compu-
tational applications related to the Sanskrit language. These tools contribute to
the field by offering practical solutions and insights for enthusiasts and learn-
ers with varying levels of Sanskrit proficiency. These tools include Jaanasan-
grahah, a collection of interesting Sanskrit related web-interfaces, Vaiyyakaranah,
a Telegram bot for learners of Sanskrit grammar and Python packages such as

PyCDSL, Heritage.py and sanskrit-text.

In Chapter 7, we make concluding remarks including summary of the primary

contributions, future work and the research directions enabled by this work.

Chapter 2

Sanskrit Question Answering

Framework

Extracting the knowledge from Sanskrit texts is a challenging task due to multiple
reasons including complexity of the language and paucity of standard natural lan-
guage processing tools. In this chapter, we target the problem of building domain-
specific knowledge graphs from Sanskrit texts. We build a natural language question
answering system in Sanskrit that uses the knowledge graph to answer factual ques-
tions. We design a framework for the overall system and implement two separate
instances of the system on human relationships from Mahabharata and Ramayana,
and one instance on synonymous relationships from Bhavaprakasanighantu, a tech-
nical text from Ayurveda. We show that about 50% of the factual questions can be
answered correctly by the system. More importantly, we analyse the shortcomings

of the system in detail for each step, and discuss the possible ways forward.

2.1 Introduction

We aim to take the first step towards a concrete NLP task, namely, natural language
question answering in Sanskrit. In particular, we aim to design a framework that
processes Sanskrit texts, extracts the information in it, and stores it in a format that

can be queried using questions posed in Sanskrit.

22

We propose to store the knowledge base (KB) in a knowledge graph (KG) format.
KGs have arich structure and store the information in the form of entities (as nodes)
and relationships (as edges between the nodes). The edges are directed, and both the
nodes and edges can store labels describing their attributes. There are multiple off-
the-shelf tools available for storing and querying KGs, including graph databases’,
Property Graphs?, Resource Description Framework (RDF) [Lassila et al., 1998], Grem-
lin queries®, SPARQL queries*, etc. The popularity of knowledge bases such as YAGO
[Suchanek et al., 2007], DBpedia [Auer et al., 2007] and Freebase [Bollacker et al., 2008]
is a testament to their success.

We also propose question answering as a concrete example of the use of such
KGs and a way of measuring the effectiveness of the system. Various online question
answering fora such as Quora® and quizzes serve as a motivation. We particularly
choose the two epics of India, namely, Mahabharata and Ramayana, categorized as
Itihasa in Sanskrit literature, and questions on human relationships within them, as
examples for our framework due to their popularity and ease of establishment of
the ground truth. We also work with Bhavaprakasanighantu to highlight the usage
for technical texts.

A model for extracting implicit knowledge from Amarakosa and storing it in a
structured manner, and a tool for answering queries using this knowledge. was pro-
posed by [Nair and Kulkarni, 2010]. Sanskrit WordNet® [Kulkarni et al., 2010] was
built by expanding the Hindi WordNet. A production grammar for kinship terminol-
ogy in Sanskrit was proposed by [Bhargava and Lambek, 1992], which explores the
suffixes and morphological and clues in the formation of relationship words. While
it provides an insight in the nomenclature of such terms, in order to be applicable
towards the identification of the relationships between entities in text, a performant

suffix analyser is required. Automatic translation tools, if available, can also be used

thttps://en.wikipedia.org/wiki/Graph_database
2https://en.wikipedia.org/wiki/Graph_database#Labeled-property_graph
3https://docs.janusgraph.org/latest/gremlin.html
*https://www.w3.0xrg/TR/xdf-sparql-query/

Shttps://www.quora.com
Shttp://www.cfilt.iitb.ac.in/wordnet/webswn/english_version.php

https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/Graph_database#Labeled-property_graph
https://docs.janusgraph.org/latest/gremlin.html
https://www.w3.org/TR/rdf-sparql-query/
https://www.quora.com
http://www.cfilt.iitb.ac.in/wordnet/webswn/english_version.php

23

where the entire text is translated to English and the KG is built from the translated
text. However, we could not find any such tools. Although Sanskrit-English dictio-
naries’ provide a word-level translation of selected words from Sanskrit to English,
word-level translation often does not produce meaningful or grammatically correct
text. We, thus, decided to use only the text as available in Sanskrit. In future, we will
explore the use of such tools and methods.

The rest of the chapter is organized as follows. In Section 2.2, we explain the
generic framework of the question answering system. There exist some excellent
tools for Sanskrit that aid us in the analysis. For other cases, we build our own
heuristic rule-based systems. In Section 2.3, we describe the automatic construc-
tion of the knowledge graph while the details of the various modules of the system
are described in Section 2.4. Since Bhavaprakasanighantu is a technical text, we high-
light its specialized processing in Section 2.5. In Section 2.6, we analyse the results
of our experiments. Finally, in Section 2.7, we discuss the lessons learnt and future

directions.

2.2 Proposed Framework

2.2.1 Knowledge Graphs (KG)

Knowledge graphs (KG) model real-world entities as nodes. Relationships among
the entities are modelled as (directed) edges. For example, in a KG about human
relationships in Mahabharata, arjuna and abhimanyu are nodes. They are connected
by a directed edge from arjuna to abhimanyu labelled by the relationship “has-son”
(putra).

In English, there have been several efforts in automated KG construction, notable
among them being YAGO, DBpedia, Freebase, etc. YAGO ontology [Suchanek et al., 2007]
was built by crawling the Wikipedia and uniting it with WordNet using a combi-

nation of both rule-based as well as heuristic methods. DBpedia [Auer et al., 2007]

"https://www.sanskrit-lexicon.uni-koeln.de/

https://www.sanskrit-lexicon.uni-koeln.de/

24

extracts knowledge present in a structured form on Wikipedia by template detec-
tion using pattern matching coupled with post-processing for quality improvement.
Freebase [Bollacker et al., 2008] is a database of tuples that is created, edited and
maintained in a collaborative manner. Unfortunately, however, none of the above
techniques are applicable for automatically building knowledge graphs in Sanskrit.

Processing of text for YAGO depends on many Information Retrieval (IR) and Nat-
ural Language Processing (NLP) tools that are available only in English and a handful
of other languages, mostly European. The state of the art of these tools in Sanskrit
is still not standardized and may not be directly useful. Sanskrit Wikipedia?® also is
not as resourceful as its counterpart in English. Hence, the amount of structured in-
formation available there is minuscule compared to the vast Sanskrit literature that
is developed over several millennia. Thus, a system such as DBpedia is not possible.
A collaborative effort such as Freebase is also ruled out due to a paucity of active
Sanskrit users adept in digital technologies. To the best of our knowledge, there is

no work that directly builds a knowledge graph from Sanskrit texts.

2.2.2 Triplets

A common way of encoding the relationship information is in the form of seman-
tic triplets. A triplet has the structure [subject, predicate, object] which
indicates that the entity subject has the relationship predicate with the entity
object. Hence, the fact that arjuna has a son abhimanyu is encoded as the triplet
[arjuna, has-son (putra), abhimanyu] ([SW\[T-T, REN STM).

The KG is built automatically by extracting such triplets from the text. We tar-
get KGs on specific types of relationships, namely, human relationships for epics,
and synonymous relationships in nighantu. One of the foremost jobs, therefore, is to
identify the relationship words. This is a corpus-independent set and depends only
on the language. However, since the text is free-flowing (except in technical texts

where there is a structure) and almost always written in poetry in the form of §loka,

8https://sa.wikipedia.org/wiki

https://sa.wikipedia.org/wiki

25

even when a relationship word is identified, the subject and object words may be
anywhere around it (both before and after). Sloka (%) is a semantic unit in San-
skrit and is equivalent to a verse. Sometimes, one or both of these entities may not
be even in the same sloka. Hence, a context window around the relationship word
must be defined and searched for the relevant entities. Specifying the length of such
a context window is not easy; if it is too short, relationships may be missed, while if
it is too long, too many spurious relationships may be inferred. Even identifying the
sloka boundaries may not always be trivial. Fortunately, however, these boundaries
are clearly marked in the texts that we have worked on.

The details of how such triplets are extracted are explained in Section 2.3. The

knowledge graph is maintained in an RDF format as a set of all such extracted triplets.

2.2.3 Questions

The next important task in the pipeline is to parse the natural language question.
Since the question is also in Sanskrit, we adopt similar processing as the text to ex-
tract triplets. In this work, we assume only factual based questions such as “Who is
the son of arjuna?” (314 T3I: F:?) The triplet extracted from the above question
will be [arjuna, has-son, X] ([3/5}4, T3, fn]).

Since Sanskrit is quite free with word ordering, the above question may be asked
in different manners, such as 3 Y: &:? or &: A YA:? or AL &: TA:? All
of these should yield the same triplet [3S}, g, fe].

The inverse question may also be asked: “Who is the father of abhimanyu?” (:
AfE=: fUAT?) The above can be answered only if it is known that the inverse of
“has-father” is the relationship “has-son”. This, again, is a property of the language
and must be explicitly mentioned.

Hence, we maintain a map of such inverse relationship rules. Note that it is not
always one-to-one. For example, “has-mother” is also the inverse of “has-son”, and
“has-father” is the inverse of “has-daughter” as well. Gender information, therefore,

becomes important.

26

We augment the initially built knowledge graph by adding appropriate inverse
relationship edges. It is ensured that an inferred inverse relationship does not con-

tradict a directly inferred relationship from the text. The details are in Section 2.3.4.

Even though the questions are simple and short, they may contain multiple triplets.
For example, a question UTUST: UeT: YTl &:? may be asked by someone who does not
know what the relation brother-of-wife is called in Sanskrit. This question contains
two relationships, 9eil and YTdT. The triplet form of these relationships would be
[urUg, e, ﬁv‘-‘{] corresponding to the subquestion ‘Who was the wife of pandu? and
[, T, %ﬂ[] corresponding to the subquestion ‘Who was the brother of wife (of

pandu)?’. All of these must be extracted correctly.

Further, they must be linked properly. In the example above, we must ensure
that the object of the first triplet is the subject of the second triplet, that is, the correct
triplets are [UTUg, Ucl, X] and [X, 9rdl, f#]. Here, a variable is used to denote the

person that satisfies both the triplets.

Once these are correctly linked, a SPARQL query pattern is formed. The SPARQL
query equivalent for the above question is
SELECT ?A
WHERE {
:UUG Tl 2X .
?X (YA .
}
This is finally directly queried against the KG, and the answer is returned. Section 2.4
describes in detail the intricacies of the different steps of the question answering

system.

Figure 2.1 describes the overall framework. The final accuracy of the system is
dependent on each of the modules of the architecture. For example, if the extract-
ing triplets component is very erroneous, then neither the KG information is cap-
tured correctly, nor is the intention of the question understood. The overall error

is a cascading effect of the errors in each of the individual components. Thus, for a

27

Analyze

Extract Triplets
2
Relation Query Triplets
Triplets

Enhance

Y Triplets
Enhance
Triplets P

Query Pattern

Answer

Figure 2.1: Overall framework of the system.

successful system, each component must be reasonably accurate.

2.3 Construction of Knowledge Graph

In this section, we describe in detail the automated construction of knowledge graph
(KG). The input consists of Sanskrit text (in digital Unicode format) of an entire work
(such as Mahabharata, Bhavaprakasanighantu, etc.) and the type of relationships in-
tended (e.g., human relationships, synonymous words, etc.). The output is a set of
triplets in the form [subject, predicate, object] where the predicate is of the relation-
ship type intended and subject and object are entities. If [a, R, b] is an output

triplet, then it implies that object b is relation R of subject a.

2.3.1 Pre-Processing of Text

Sanskrit is a morphologically rich language. A single noun root, called pratipadika
(wfaafe), can yield many forms depending on the case, gender and number. Simi-

larly, a single verb root, called dhatu (4Tq), can lead to many forms as well depending

28

on the tense, person and number. In addition, various prefixes (upasarga, 3uEf) and
suffixes (pratyaya, Wcdd) get affixed to these forms to generate thousands of other

forms.

Further, words are very often joined together to form compound words using
either pronunciation rules through a process called sandhi (F+¥) or semantic rules
through a process called samasa (HH1H). Often, both are invoked together, and a se-

ries of words are joined together to form one big compound word.

Splitting these compound words into their base words is a highly complicated
procedure and may not always be unambiguous. For this step, we make use of the
Sanskrit Sandhi and Compound Splitter, a tool® by [Hellwig and Nehrdich, 2018]. For
example, if the input text is FUTTSIT: FHU: the output is FHU-IFSFAT: F: A,

The next task is to semantically analyse the form of the word. Again, we use a
third-party analyser tool, The Sanskrit Reader Companion®® from The Sanskrit Her-
itage Platform by [Goyal et al., 2012]. This tool outputs the case (vibhakti, fd¥fh),
number (vacana, 9) and gender (linga, f@ig7) for each word. The tool uses vari-
ous abbreviations!! to convey the linguistic information. The tool provides multiple
potential analyses for each input. For the sake of automated processing, we opt for

the first result.

For the running example, the analysis yields
&0l [‘voc., ‘sg’, ‘m.’]

S [1oc, ‘du’, ‘m.’]
fF9 [‘nom., ‘sg.’, ‘m.’]
% [‘nom.’, ‘sg.’, ‘m.’]

Here, ‘nom.’, ‘loc.’ and ‘voc.” are abbreviations used to denote nominative case
(e, locative case (@) and vocative case (FFI4H) respectively. Similarly, ‘sg.’
and ‘du.’ indicate singular and dual number (U&aa and fga=). While ‘m.’ denotes
the masculine gender (4feig).

*https://github.com/0liverHellwig/sanskrit/tree/mastexr/papers/2018emnlp
Ohttps://sanskrit.inria.fr/DICO/reader.fr.html
11A11 the abbreviations used by the tool are listed at https://sanskrit.inria.fr/abrevs.pdf.

https://github.com/OliverHellwig/sanskrit/tree/master/papers/2018emnlp
https://sanskrit.inria.fr/DICO/reader.fr.html
https://sanskrit.inria.fr/abrevs.pdf

29

The word &S gets correctly analysed: it is in the nominative case, is in singu-
lar number, and masculine gender. However, the other words require some more
adjustments. For example, the word 3@:[is shown to be in dual number. This is
output since the original compound word consisted of two persons. However, now
that they are separated, it should no longer be in dual number, but adjusted to be in
singular number. Similarly, the case analysis for @0t is wrongly output to be voca-
tive. The reason for this again is the fact that the original structure of the compound
word was lost. We adjust the case of previous words in a compound word by adopt-
ing the case of the last word in the compound word. Thus, the case for ®Ufis changed

to locative, since that is the case for 3.

2.3.2 Identifying Relationship Words

Given a particular relationship type, the set of words pertaining to it is a property
of the language and is corpus-independent. For example, if human relationships
are targeted, in Sanskrit, the (roots of the) relevant words are pitr (father, fﬁ?[), matr
(mother, A1J), putra (son, =), putri (daughter, G3), pati (husband, Ufd), patni (wife,
Tah), etc. Of course, these words can appear in various forms. More importantly,
their synonyms can also appear. For example, the words ‘g{%?;[(duhitr), d-4T (tanaya),
HATHST atmaja are synonymous with 33l (putri).

While these can be learned, since the set is mostly fixed, we have employed a
key-value based approach where we have listed many of such relationship words
along with their synonyms. For each such group of synonyms, there is a canonical
word (e.g., 13)3ﬁ for the group of words indicating daughter) that is used in the KG.

The identification of a relationship word is simply a match from this entire set

of words.

2.3.3 Identification of Triplets

Once a relationship word is identified, it forms the predicate of a triplet. The next

task, therefore, is to identify the subject and object corresponding to it.

30

It is expected that the subject and object entities will not be too far off from the
predicate word. To bound the sphere of influence or context, we use sloka (%ie)
boundaries. Each sloka considered as a semantic unit and is akin to a verse. For-
tunately, for the texts we have used, the sloka boundaries are clearly marked. In
this work, we restrict the context to be one $loka before and after the one where the

predicate is found, i.e., a total of 3 sloka.

Since subjects and objects are entities, they generally occur as nouns in a lan-
guage. The analyser tool (The Sanskrit Reader Companion) described earlier marks
the parts-of-speech tags of words. It, however, does not distinguish between nouns,
pronouns and adjectives. Since there is a fixed set of pronouns for Sanskrit, we use
that set to correct some of the nouns. We, however, fail to distinguish the adjectives

from the nouns in a satisfactory and consistent manner. This is a major future work.

Within the nouns (and adjectives), we look for those that are in the genitive case
(WSt fa4fk). The genitive case pertains to the sasthi vibhakti (genitive case) and de-
notes sambandha (§%-¥). The word sambandha in Sanskrit literally means relation-
ship and, therefore, a noun exhibiting genitive case is the most likely candidate for
a subject. For example, the 3Sj-&d =I: HWH=]: AT means abhimanyu was son of ar-
juna. Here, ‘of arjuna’ is expressed by the genitive case of the word (35f), i.e., S-Te2.

Hence, all such nouns in the genitive case are marked as subjects.

The relationship word or the predicate can be in different cases, numbers and
gender, though. Since the object follows the predicate, according to Sanskrit gram-
mar, it must be in the same case, number and gender as the predicate. We use this
rule to extract objects. To be precise, an object is a noun that exhibits the same case,
number and gender as the predicate word. In the sentence 3Sj-% J3I: HTWH-Y: AT,
word U3: is the predicate word and the word 3f%HZ; is the object and both of these

words are in the nominative case (32T fa%1fh).

We insert all such extracted triplets in the KG. We assume that if an entity appears

multiple times, it refers to the same person. The above assumption is almost always

31

correct barring some exceptional cases.'?

2.3.4 Enhancement of Relationships

As explained earlier (in Section 2.2), just the base relationships may not always be
enough to answer a question. If the triplet [arjuna, has-son, abhimanyu] ([aﬁ:r, RER
A9HY)) is stored, the question “Who is the father of abhimanyu?” (&: Af9H=1: fudr?)
cannot be answered, even though the information is present.

To be able to answer such queries, we have enhanced the KG with inverse re-
lationships. For example, the inverse of “has-father” is “has-son”. This, again, is a
property of the language and are explicitly stored.

As discussed earlier, the inverse relationships are not always one-to-one. For ex-
ample, “has-mother” is also the inverse of “has-son”, and “has-father” is the inverse
of “has-daughter” as well. Hence, we use the gender information of the subject and
the object to disambiguate.

The complication does not end here. Imagine a question “Who is maternal uncle
of Nakula?” (A& HATdeT: %:). This information may not be directly stored in the KG.
The relationship HTde is a composition of ATJ and YTq. These components [, HIq,
A1E1] and [ATEY, 9Tq, ed] may be present in the KG. Again, the situation is that the KG
contains the information but cannot answer the question.

To solve this, derived relations could be broken into their component base parts.
Thus, “has-maternal uncle” is stored as “has-mother” and “has-brother” with an ad-
ditional (possibly unnamed) node in between. In particular, from the triplet [7%d,
HIdd, 7], two more triplets [(%d, |iq, X] and [X, YT1q, U] could be generated. If
there is already such a node X, it could be used; otherwise, a new node could be cre-
ated. However, addition of such dummy nodes has not been explored in this work.

We achieve the same result by handling this issue at the time of querying. This
is discussed in Section 2.4.2. We maintain a list of relationships and their possible

derivations from base relationships. Once more this mapping is rarely one-to-one.

12karna was the son of kunti, and one of the kaurava was also named karna.

32

For example, “brother-of” can be composed of “son-of-father” and “son-of-mother”.
Also, the gender must be taken care of.

A particularly interesting case is “has-ancestor” and “has-descendant”. These are
recursive relationships, and the depth of recursion can be anything, i.e., a ‘father’ is
an ancestor, so is an ‘ancestor-of-father’, and so on. We do not handle these cases in

the current work.

2.4 Question Answering

We now describe one application, that of question answering. We assume that the
questions are asked directly in Sanskrit and are about facts, i.e., about a single piece
of information. We also assume that the questions are only about the relationships
that the knowledge graph encodes. If not, the question is ignored, since clearly the
KG is incapable of answering it. Further, the questions are assumed to be short and
consist of a single sentence only.

The question is first pre-processed in the same manner as the text (Section 2.3.1).
To be more precise, compound words are split using Sanskrit Sandhi and Compound
Splitter a tool by [Hellwig and Nehrdich, 2018], the component words are analysed
using The Sanskrit Reader Companion from The Sanskrit Heritage Site, and relation-

ship words and nouns are identified. Next, triplets are extracted.

2.4.1 Identifying Triplets

A blank triplet is initialized. The question words are scanned one by one. For each
word, it is determined if it can be a subject word, a predicate word or an object word.
If the word is a noun in genitive case but is not a relationship word, then it is likely
to be a subject word. The relationship words directly give the predicates. The object
word is generally in the nominative case. For example, consider the question aﬁfﬂl’l
T3: &:? (“Who is the son of arjuna?”). Since 315} is in genitive case, it is the subject.

The word 9= is the predicate. The object is fRH, The triplet formed, therefore, is

33

[7f, T, form].

Once a tripletis filled up, another new triplet is initialized. This is necessary since
there may be chain questions of the form 34?1?’&’1 U P: 6:? The triplets generated
from this are [Gﬁfvf, 94, X] and [X, 97, ﬁv‘ﬂ[]

The process goes on till all the words in the question are processed.

At the end of this phase, the triplets thus formed are called query triplets.

2.4.2 Enhancing Triplets

Each query triplet is next enhanced to a set of triplets, called the enhanced triplet set.
The rules for enhancing the relationship of a query triplet is the same as that used
in processing the KG triplets. In particular, each complex relation is broken into its
constituent parts and new triplets are created using the aforementioned mapping

of relationships to its constituents.

Suppose, a predicate (i.e., relation) R can be decomposed to two base predicates
R1 and R2. Then, if a query triplet is of the form [A, R, B], then two triplets of the
form [A, R1, X]and [X, R2, B] aregenerated. Notethat{[A, R, Bl}and{[A,
R1, X1, [X, R2, B]} are equivalent expressions and either of them can return the
correct answer from the KG. However, since it is not known which information is

stored in the KG, both are used.

Thus, each query triplet QT; is replaced by its enhanced triplet set ET; = {QT;}U

IT/ where IT/ is a set of triplets inferred from QT;, as shown in the example below.

For the question S AT fUdT &:, we first obtain the triplets {[3{S{, AT,
X], [X, fuq, f%H]}. These triplets are then enhanced by appropriately splitting the

relationship ATdeT using the rule AIJe = HIJ + YIq. Here, QT = [31?\[?, HIdd, X] and
1T = {[ﬂﬁ[ﬁ, HId, Y1, [Y, 91, X]}. As a result, we get two triplet sequences for this
question, {[3f9, A1d, Y], [Y, ¥Tq, X1, [X, fuq, f]} and {[3r, A1ge, X1, [X, fuq, fe).

34

2.4.3 Query Pattern

If the question contains only one query triplet, then members of its enhanced triplet
set form the alternate query patterns. Suppose, however, the question contains n
query triplets with their corresponding n enhanced triplet sets ET1, ET5, - - - |, E'T,,.
The Cartesian product of the elements of these sets form the alternate query patterns.
Thus, if there are 2 enhanced sets with 2 and 3 elements in them, the total number
of alternate query patternsis 2 x 3 = 6.

Each of these alternate query patterns are posed to the KG and answer triplets are
returned. The correct field of the answer triplet is returned as the factual answer.

We have not encountered a case where alternate query patterns return different
answers. If, however, such a situation arises, a further disambiguation step (possibly

using majority voting, etc.) is required.

2.5 Technical Texts

We have chosen a technical text Bhavaprakasa which is one of the important texts
from Ayurveda. Bhavaprakasanighantu is a glossary chapter from this text, which
contains detailed information about the medicinal properties of various plants, an-
imals and minerals written in a sloka format. There are 23 adhyaya in this chapter.
Being a technical text, Bhavaprakasanighantu has more structure than Ramayana or

Mahabharata.

2.5.1 Structure
The text Bhavaprakasanighantu loosely adheres to the following structure.
* Substances (dravya,) with similar properties or from the same class occur

in the same chapter. For example, all the flowers are in one chapter, all the

metals are in another chapter.

35

» Each chapter consists of various blocks (sets of consecutive sloka), where each

block speaks about one substance.

» Each block generally has the following internal components:

Synonyms of the concerned substance

Where that substance can be found

Properties of the substance. e.g., colour, smell, texture, composition and

other medicinal properties

Differences between the different varieties of the substance

While the blocks are structured to some extent, the following deviations exist.

The length of each block is not fixed.

* The number of synonyms of each substance are not fixed.

» The order of the components of the block varies from substance to substance

to a certain extent.

Some of the internal components may, at times, be absent such as the varieties

of a substance.

Importantly, the separation between two consecutive blocks is not marked in the
text.

These points of deviation from the pattern act as hurdles in the process of under-
standing and exploiting the structure of a text to extract information. Understanding
the structure of a text can be a challenging task. We have taken the help of domain
experts'® to form our understanding of the structure described above.

Properties (guna, U7 are of the form (name, value). A property value can be
directly attached to a substance, or it can be attached through a property-name.

For example, a substance is “red”, or, a substance has colour “red”.

13We acknowledge Dr. Sai Susarla, Dean at Maharshi Veda Vyas MIT School of Vedic Sciences, Pune,
India, and his team for sharing their expertise with us.

36

There are various types of relationships that can be of interest. Examples of these
relationships include (substance-1, is-synonym-of, substance-2), (substance,
property-name, property-value),(substance,has-property, property-value),
and (substance, found-at, location). There are cases where a property-value
has different meanings in different contexts, i.e., for different property-name in-
stances. For example, guru, as a size property refers to the size of a substance. With-
out such specification, in the context of Ayurveda, guru holds the meaning hard to
digest. We use the relation has-property when the property-value is not associ-
ated with a specific property-name type.

We focused our efforts on a single relationship in the Bhavaprakasanighantu, namely,
is-synonym-of. In other words, the triplets that we are interested in are of the form
(substance-1, is-synonym-of, substance-2). Since the predicate is same for all
triplets, we choose to get rid of it and think of the problem as simply finding pairs of
synonyms.

This task is subdivided into two tasks, (1) finding sloka that contain the synonyms,

and (2) given such a sloka, finding pairs of synonyms from it.

2.5.2 Property Words

The corpusisinitially pre-processed in a similar manner as described in Section 2.3.1.
However, a next layer of processing is done to extract more information.

The set of properties is a relatively small set of words. The names and values
of these properties together are called property words. Since the property words
recur heavily in every block that describes a substance, they are expected to have
much higher frequencies than the names of substances. We test this hypothesis by
performing a frequency analysis of the top words and nouns in the entire text.

Table 2.1 lists the top-10 most frequent words and nouns along with their fre-
quencies. Notice that most frequent words also contain stopwords like 9, dq etc.,
while the list of nouns indicates that the standard property words such as aTd, fix,

%W have a high frequency. Following this empirical evidence, we choose the top-50

37

Table 2.1: Top-10 most frequent words, nouns and their frequencies from Bha-
vaprakasanighantu.

Words
Adhyayal Adhyaya2 All Adhyaya

3,127) (3,56) (3, 946)
(dg, 85) (fa<h, 39) (dg, 786)
(P, 55) (@g,37) (U=, 461)
(%, 53) (F%,31) (FF, 438)
(@1, 47) (g, 24) (g, 394)
(U=, 45) (M, 24) (@, 321)
(g, 39) (@, 22) (a1, 278)
(@, 35) (faw,22) (31, 268)
(31U, 34) (@@, 21) (fFH, 266)
(fowh, 34) (84,200 (7[5, 254)

Nouns
Adhyayal Adhyaya2 All Adhyaya

(%, 53) (fa=s, 39) (fum, 461)
3wr, 47) (%, 31) (v, 438)
(fr, 45) (Rw,22) (%, 254)

(fa<k, 34) @1, 21) (3507, 240)
(ara, 32) (fUs, 19) (fa=m, 237)
T, 29) (38, 18) (ara, 204)
(TS, 28) (819, 18) (&4, 194)
@@, 25) (4,17 (&8, 177)
(Fg, 25) (Ug, 16) (T91, 160)
(9, 24) (+g, 16) (<19, 160)

most frequent nouns as “properties”. The substances are chosen from the rest of the

nouns.

2.5.3 Synonym Sloka Identification

Generally, the different synonyms of a substance are listed in a single sloka at the
beginning of a block. A set {n,ns, ...n;} of nounsis called a synonym-group if every
n; is a synonym of every other n;. Any such (n;, n;) pair is called a synonym-pair. A
sloka that gives information about a synonym-group or synonym-pairs is referred to
as a synonym sloka. The first task is to identify instances of such synonym sloka.

To identify a synonym sloka automatically, we use various linguistic features of

a sloka and then use them in a classifier. We create a 42-dimensional feature vector

38

Table 2.2: Features of a sloka.

Counts Words, Nouns, Properties, Non-Properties, Special Words, Pro-
nouns, Verbs, Case-i Nouns (z = 1, ..., 8), Number-j Nouns (j =
singular, dual, plural)

Ratio to Words Nouns, Properties, Non-Properties, Special Words

Ratio to Nouns Properties, Non-Properties, Special Words, Case-: Nouns (i =
1,...,8), Number-j Nouns (j = singular, dual, plural)

Other Ratios Properties to Non-Properties, Non-Properties to Properties,
Special Words to Properties, Special Words to Non-Properties

per sloka. Table 2.2 enlists all the features used. The features are based on counts
and their ratios. Some of the notable features include number of nouns, pronouns
and verbs, number of property words present in a sloka, ratios of property words
to total number of words, number of words in each case (ﬁﬂﬁﬁ), and so on. The
category “specials” contains adverbs, conjunctions and prepositions.

Once each sloka is converted into a 42-dimensional feature vector, various classi-

fiers and ensemble methods are used to classify into a synonym sloka or otherwise.

2.5.4 Identifying Synonymous Nouns

Once a synonym §loka is identified, the next task is to identify the synonyms from
it. Given a synonym sloka, we first exclude all the property words from it. We next
consider the list of all the nouns in the sloka: {ny,ng, ..., 1}

We call a pair of nouns (n;,n;) a synonym pair if both n; and n; have the same
case (fa¥fth) as well as the same number (339). We do not use the gender (feig) in-
formation since there are examples of synonymous substance names that belong to
different genders. For example, 9 (neuter), 94 (feminine) and S¥OT (feminine)

form a synonym group.

2.6 Experiments and Results

In this section, we present our experiments and discuss the results. The code is

written in Python3. All experiments are done on Intel(R) Core(TM) i7-4770 CPU @

39

3.40GHz system with 16 GB RAM running Ubuntu 16.04.6 OS. RDF is used for stor-
ing the knowledge graph, and querying is done using SPARQL querying language.

Python library RDFlib is used for working with RDF and SPARQL.

2.6.1 Datasets

We have worked with texts containing two types of relationships:

1. Human Relationships: The two well-known epics of ancient India, Ramayana
and Mahabharata, contain numerous characters and relationships among them.

We have, thus, used them as datasets for human relationships.

2. Synonymous Relationships of Substances: Ayurveda, the traditional Indian
system of medicine, has a rich source of information about medicinal plants
and substances. We considered Bhavaprakasanighantu, a glossary chapter of
the Ayurveda text Bhavaprakasa as the dataset. It enlists numerous medicinal
plants and substances along with their properties and inter-relationships. In

this work, we only consider the relationship “is-synonym-of”.

Table 2.3 shows the statistics about the datasets considered.

Table 2.3: Statistics of the various datasets used.

Dataset Ramayana Mahabharata Bhavaprakasanighantu
Type Classical Classical Technical
Chapters 7 (kanda) 18 (parvan) 23 (adhyaya)
Documents 606 2,327 23
Sloka 23,934 81,603 4,244
Words (total) 2,69,603 17,49,709 31,532
Words (unique) 16,083 55,366 5,976
Nouns (total) 1,52,878 6,36,781 19,689

Nouns (unique) 9,553 20,545 3,684

40

Table 2.4: Statistics of the knowledge graphs for the human relationships.

Ramayana Mahabharata

Preprocessing ~ 3.5 days ~ 13 days
Time taken Triplet Extraction 14.18 sec 57.19 sec
Triplet Enhancement 0.40 sec 2.05 sec
Entities (Nodes) 1,711 3,552
Before enhancement Triplets (Edges) 6,155 18,936
Type of Relations 24 25
Entities (Nodes) 1,711 3,552
After enhancement Triplets (Edges) 16,367 48,395
Type of Relations 27 27

2.6.2 Knowledge Graph from Ramayana and Mahabharata

Table 2.4 shows the various statistics about the knowledge graphs constructed from
the datasets Ramayana and Mahabharata.
While pre-processing the text requires a large amount of time, the other steps

are significantly faster. The querying times are in microseconds.

2.6.2.1 Questions

To evaluate the performance of the question answering system, we collected 35 ques-
tions from Ramayana and 45 questions from Mahabharata from 12 different users,

with each user contributing between 5-10 questions.

2.6.2.2 Performance

We evaluate the performance of the system for three tasks.

* QParsereferstothe query parsing task. If the query pattern is correctly formed
from the natural language question, we count it as a success; otherwise, it is a

failure.

* QCond is the conditional question answering task subject to correct query for-
mation. A success is counted only if the answer to the question is completely

correct.

41

Table 2.5: Performance of the question answering tasks.

Text Task Total Found Correct Precision Recall F1
QParse 35 33 27 0.82 0.77 0.79

Ramayana QCond 27 19 09 0.47 0.33 0.39
QAll 35 20 10 0.50 0.29 0.37

QParse 45 45 41 0.91 091 0.91
Mahabharata QCond 41 36 22 0.61 0.54 0.57
QAll 45 40 23 0.58 0.51 0.54

QParse 80 78 68 0.87 0.85 0.86

Combined QCond 60 55 31 0.56 0.46 0.50
QAll 80 60 33 0.55 0.41 047

* QAll is the overall question answering task.

Table 2.5 demonstrates the performance of our system on the collected ques-
tions. The query parsing task is fairly accurate. However, the accuracy of question
answering has a lot of scope for improvement. We next analyse some of the reasons

for failure.

2.6.3 Analysis of Wrong Answers

We analyse the wrong answers in two phases: parsing errors and answering errors.

2.6.3.1 Parsing Errors

Following are some examples of queries that got incorrectly parsed.

o TS GRATOTH I A1 — [, 9, fore]
The question expects all the names of sons of gandhari =T but the parsed
query only asks for the name of ‘a son’ of =W, This error originates from
the fact that we have not considered the number (39) of the relationship word
while parsing the question. However, the number can be considered, and all

triplets that satisfy the criteria can be returned.

o RUTSHAT: o TFa-e: — [fohm, Torm, Trae]

There are patterns in the question set that are not handled by our algorithm.

42

For example, the algorithm did not handle the way of asking the relationship
between two people using the word ¥+ and, thus, results in a triplet that
does not make sense. If the same question was phrased as U: 3@?@1 %, our
algorithm would be able to parse the question to give [315, faH, &Uf]. Ques-
tions like &Uf: 61\{1:-1\%4 <, d‘lxgi:d%q ST Gﬁ\i:r@[%: &UT: and HT: & SJG\I:WJ also
get parsed correctly to [33[, fo, &uf].

- foaTe: STof e S1vaq FaT TE — [31fH, fohm, farare]
The question parsing algorithm, while tolerant to some extent, is not fully ro-
bust to free word order. An occurrence of [daTg word needs to be followed by
the instrumental case @?ﬁ?ﬂ) word, followed by ¥g for it to be parsed correctly.
Thus, if the question is changed to 3se fdaTg: &1 T8 HAvadq, it will get parsed
correctly to yield [35}, Ui, fre].

2.6.3.2 Answering Errors

Out of the queries that correctly get parsed, following are the queries which we can-

not find the answer due to the inability of performing path queries.

o SIHAT GIRAT AT — [CRRY, TohH, SHiHe]
This question would have got answered only if there is a direct edge between
ZRY and HiFT. If there is no direct edge, but an edge between RY and T&HIT
exists along with the edge between @&HUT and SHa, then this answer should
have been found. Our inability to pose it as a graph path searching query is

the cause of this failure.

« BgHa: U &: — [&gAd, fug, o]

We correctly parse this question and there exists a triplet [ATS[d, ﬁ?{, qaH].
However, as the information that #T5fd is another name of &J#d is not present

in the knowledge graph, resulting in the failure to answer this question.

o QR0 : GUST: T IF: A — [, 99, TohH), [T, T, 3]

Again, despite getting correctly parsed, since we cannot follow the “has-son”

43

Table 2.6: Sloka 25, 26, 27 from Adhyaya 67 of Adi Parvan in Mahabharata.

Sloka Sandhi-Samasa split

FAFere fRrar Wt qer: Pl A | Hiereg fRra Wt e g wHa: |
A=A gt gamae= glall HAfaTa-TTfa:-9-Td g Ioit=-3Her= qliR4ll

T fag: G s qge| Toguey fag: Y- AT-31 Jaa|
Y1 QY erTadt FHINoT R Y STA-ATY erHTadl AU
TEEIAE] T aREH TEaTieAl 14 JETU:-g NI IR-TA FE-arerTI1R& |
YT ST AHEH [daR § | IT-FAGT: SIA-SheeTH-3EH [daR g |

UW@WWWEII?GII W@WWW—W%’H?\SII

relationship arbitrary number of times, this query cannot be answered.

2.6.3.3 Correct Answers despite Wrong Parsing

Interestingly, there are cases when despite the query being parsed incorrectly, the
correct answer exists in the result set. The following examples highlight two such

cases.

« YU HIAGAH: YT &: — [0, Y1, fehH]
The triplet is incorrectly formed, since we did not capture the information
FHHSAH: (youngest). However, the correct answer, /9907, being a brother of
¥[dUT, is captured in the result set. The question is, thus, deemed to be answered

correctly.

o WIHE 3FIST: : A — [HH, 9, ford]
Similar to the previous question, we classify the formed triplet as incorrect,

for missing the quality ‘elder’. However, answers found do contain the correct

answers JfAf8R and Ui,

2.6.4 Analysis of Errors in KG Triplets

We now take a look at in-depth analysis of some incorrect triplets retrieved by our
method and investigate the reasons behind the failure. For this purpose, we consider

a small extract from the corpus and follow the entire pipeline of forming the triplets.

Table 2.7: Analysis of Sloka 25.

44

Word Root Analysis Is-Noun Is-Verb Error

Afae | g, ‘sg’, ‘m.] True False

IREL IRE] [‘nom., ‘sg.,] True False

ot iR [1’, ‘sg., 1] True False AnalysisError
adn: dq [‘g’, ‘sg., 1] False False

T REl [nom., ‘sg.’, ‘m.’] True False

TN S HENE [‘nom., ‘sg.’, ‘m.’] True False Corrected
arfasm rfast [nom., ‘sg.’, ‘f’] True False OversplitError
3ATd Ad [‘pft’, ‘ac’, ‘pl’, ©2’] False True OversplitError
Tifa: Tfa [‘nom., ‘sg.’,] True False OversplitError
9 El [‘conj.’] False False

qq uq [‘prep.’] False False

o z [‘acc.’, ‘du’, ‘m.] True False

LEll el [‘acc’, ‘du.’, ‘m.’] True False

Aaem | [gr, ‘sg’, ‘m.] True False

d d [‘con;j.’] False False

Table 2.6 gives an extract containing three sloka (25, 26 and 27) from Adhyaya

67 of the Adi Parvan in Mahabharata. Table 2.7, Table 2.8 and Table 2.9 contain the

detailed analysis of these sloka as well as a classification of the errors in the analysis.

2.6.4.1 Types of Errors

We now discuss the possible errors, as exemplified in the analysis Tables 2.7 to 2.9.

* AnalysisError:

This is an error in the analysis obtained from The Sanskrit Heritage Parser.

For example, the word /T in sloka 25 is analysed as a form of ¥R instead of

a form of WAL, Thus, the pratipadika identified is wrong. This also results in

the other analysis details such as case, gender and number, being wrong. It

should be noted that words can be analysed differently in different contexts.

For example, the word W=, if analysed standalone as a word, can get analysed

correctly; however, in the current context, it results in an erroneous analysis.**

Such errors may be fixed in the future versions of the parser.

4Erroneous analysis of W™ https://sanskrit.inria.fr/cgi-bin/SKT/sktreader.cgi?
lex=SH&st=t&us=f&cp=t&text=anilasya+zivaatbhaaryaa+tasyaa.h+putra.h+manojava.h&

t=VH&mode=p (Accessed on 10 Sep 2019)

https://sanskrit.inria.fr/cgi-bin/SKT/sktreader.cgi?lex=SH&st=t&us=f&cp=t&text=anilasya+zivaa+bhaaryaa+tasyaa.h+putra.h+manojava.h&t=VH&mode=p
https://sanskrit.inria.fr/cgi-bin/SKT/sktreader.cgi?lex=SH&st=t&us=f&cp=t&text=anilasya+zivaa+bhaaryaa+tasyaa.h+putra.h+manojava.h&t=VH&mode=p
https://sanskrit.inria.fr/cgi-bin/SKT/sktreader.cgi?lex=SH&st=t&us=f&cp=t&text=anilasya+zivaa+bhaaryaa+tasyaa.h+putra.h+manojava.h&t=VH&mode=p

45

Table 2.8: Analysis of Sloka 26.

Word Root Analysis Is-Noun Is-Verb Error
TEE Uy [‘g’, ‘sg.’, ‘m.] True False
fag: fag [‘pft.’, ‘ac’, ‘pl.’, ‘3] False True
RELE e [‘acc’, ‘sg.’, ‘m.’] True False
e S [‘acc., ‘sg’, ‘m.’] True False
AT BIEC [‘adv.’] False False
) Y [‘con;j.’] False False
gy edd [‘acc., ‘sg.’, ‘m.’] True False
o z [‘acc.’, ‘du.’, ‘m.’] True False
LEll el [‘acc.’, ‘du.’, ‘m.’] True False
WA ddd [‘g’, ‘sg.’, ‘m.’] True False
A Ay [‘conj.’] False False
giTa=dl &fFEd [‘acc’, ‘du’,‘m’] True False
Ao " [facc.’, ‘du’, ‘m.’] True False
JeLd: geddid [‘g’, ‘sg’, ‘m.’] True False
qd d [‘conj.’] False False
gt 9T [‘nom, ‘sg.’, f] True False
QX ¢ [‘voc., ‘sg.’, ‘m.’] True False OversplitError
e £ [‘nom., ‘sg.’, ‘f’] True False OversplitError
Sal EREN [‘acc’, ‘sg.’, ‘n.’] True False OversplitError
Ell Ell [‘con;j.’] False False OversplitError
amfedt amfeq [‘acc’, ‘du’, ‘n.’] True False OversplitError
Table 2.9: Analysis of Sloka 27.
Word Root Analysis Is-Noun Is-Verb Error
T IR ['voc), ‘sg., ‘m.] True False OversplitError,
AnalysisError
fae: g [‘acc.’, ‘pl’,] True False OversplitError,
SandhiSamaasaError
ST Sd. [‘acce’, ‘sg’, ‘n’’] True False
PEH hH [‘acc’, ‘sg’, ‘m.] True False
3Ahl ATk [‘nom., ‘sg.’, ‘f’] True False
famar fa=x [pft’, ac’, sg’, 3] False True
® g [‘part.’] False False
THEE J9 ™ [‘g), ‘sg’, ‘m.’] True False
d d [‘con;j.’] False False
o vd [nom., ‘sg’, ‘f’] True False
a1 dq [‘nom., ‘sg.’, ‘f’] False False
qgIH 99 [‘g’, ‘pl’, ‘m.’] True False
AT IATH [‘g’, ‘sg’, ‘m.] True False
B B [‘part.’] False False

46

* OversplitError:
This is an error in the sandhi and samasa splitter, where a word that should
not have been split is split. For example, in §loka 26, 3% is wrongly oversplit
as 3 and T, and SEETieAT as §1& and dTfe, Sometimes a word is erroneously
oversplit by the analyser as well. Again, in $loka 26, for example, aﬁii[is erro-

neously split as dT and 3TF%:[

* SandhiSamaasaError:
There can be error in analyzing the correct sandhi and samasa in a word. In
other words, when a word is broken, the constituent words can be erroneous.
For example, in sloka 27, FRTRIGI ST is split as A1, fGT: and ST, where TiTag],

in addition to being oversplit, is also changed into plural form.

2.6.4.2 Extracting Triplets

After obtaining the analysis, when we proceed to extract triplets as mentioned, we
tried using 4 different filters for extracting triplets. In every filter, the case of the
subject word must be sixth (¥8) and the gender of the object word must match with
the gender of the predicate word. Filters differ in the allowed positions of subject
and object words relative to the predicate word as well whether the number (d3-)

of the object is matched or not.

Table 2.10: Filters for extracting triplets.

Filter Position of subject Position of object Number (a9) of object
1 Either side of predicate Either side of predicate Does not matter

2 Either side of predicate Either side of predicate Must match predicate

3 Before predicate After predicate Must match predicate

4 After predicate Before predicate Must match predicate

Table 2.10 describe the different filters. Filter 1 is the superset of other filters and
Filter 2 is the superset of Filter 3 and Filter 4.
Through empirical evidence, we found that Filter 2, although being stricter than

Filter 1, still captures roughly the same number of triplets while reducing the errors.

47

Filter 3 and Filter 4, while exhibiting fewer mistakes, find fewer correct triplets as
well. While we acknowledge that such an analysis is required on a larger scale to
decide among the filters, for our purposes, we choose Filter 2 based on the empirical

evidence, and proceed further.

2.6.4.3 Analysis of Incorrect Triplets

In this section, we take a look at some wrong triplets that were retrieved and the

reasons behind their retrieval.

« (g, T, HHITO)
sloka 26, listed in Table 2.6 contains two relationship words, Y51 and 113ﬁ The
first one is used in relation to a@e who is the son of Ucg¥, and the triplet (YF,
RER 29 is found correctly. However, because of the presence of the second
word g3, which is actually used with 39, a wrong triplet (FcgH, G, H=iIT8)
is formed. Due to the same reason, (¥, =, &Hdq) is also found. Since the
context for finding relationships covers the full sloka, when a single sloka con-
tain multiple relationships, such errors occur. If sentences were instead used,
the error could have been reduced. However, there do not exist clear sentence

boundaries.

. (Fewufa, s, =)
As discussed in Section 2.6.4.1, the word aX&! gets oversplit wrongly into @@
and T, and the split words are analysed separately, resulting in the wrong
triplet. Even if this split did not occur, we would have got @&t as the object in
this triplet. This is wrong since this is actually an adjective used for the sister
of El}iﬂlﬁ Since we currently do not have any mechanism of distinguishing

between nouns and adjectives, it would have resulted in incorrect triplets.

We next examine some triplets that should have been found but were not found

and the reasons behind their non-retrieval.

48

Table 2.11: Training and testing scenarios on Bhavaprakasanighantu.

Scenario Training Set Testing Set
S1 First 20% of Adhyaya1l Rest 80% of Adhyaya 1
s2 First 20% of Adhyaya 2 Rest 80% of Adhyaya 2
S3 Adhyaya 1 Adhyaya 2
S4 Adhyaya 2 Adhyaya 1

o (e, e,)

The relationship word that occurs in sloka 25 in Table 2.6 is grgt, which suffers
an AnalysisError and is identified as a1 of #Tf instead of W& of WA, Due to
the root word (WTfaufee) itself being misidentified, it is not recognized as a rela-

tionship word and thus, does not satisfy the filtering criterion. Consequently,

the triplet (31d, Tet, @) is missed.

o (T, U, SEmETie)
In $loka 27, 9T of YW is referred to with a pronoun I, which is connected
to a noun in the previous sloka. To correctly identify the triplet (YTH, Uc,
FerdrieAt), we would need a mechanism to connect pronouns to their proper

subjects. We do not handle this currently.

2.6.5 Synonym Identification from Bhavaprakasanighantu

Questions for the Bhavaprakasa are implicit, as we are considering only the synony-
mous relationship. Therefore, the evaluation is performed on the synonym groups
and synonym pairs identification. We created ground truth for the first two adhyaya
of Bhavaprakasanighantu. Adhyaya 1 contains 261 sloka, while Adhyaya 2 contains
131 sloka. For each of these sloka, we first identified if it is a synonym sloka. If it is so,

we next extracted the list of synonymous words contained in it.

2.6.5.1 Classification

Using the feature vectors obtained for each sloka, we used various classifiers to clas-

sify each sloka as a synonym $loka or otherwise. We tried four practical scenarios of

49

Table 2.12: Performance of classifiers in identifying synonym sloka.

Scenario Train Size TestSize P P TP Accuracy Precision Recall F1

S1 52 209 84 56 42 0.73 0.75 0.50 0.60
S2 26 105 44 43 31 0.76 0.72 0.71 0.71
S3 261 131 54 45 36 0.79 0.80 0.67 0.73
S4 131 261 90 99 66 0.78 0.67 0.73 0.70

Table 2.13: Examples of errors in classification (scenario S3).

False Positives (9) False Negatives (18)

HTHEUTEAT FUT AUTe! A1eTd0iges fTegUg Teaet 7 Sl 9g Aiederdivfes:
HILHR DIUCToSTAT Bl Tl TAT 11& 1 TR A&l T Fiay & 19211
HigsTel HeMd: HHe: U 3 g {ETod Tl o AT AR

fexua: Tsaw! 3 AT UST Sad: 1331w ahg feH Aie foh SroeaTe, 1183 11

training and testing set choices as described in Table 2.11.

The size of training sets were chosen to be smaller than those of test sets to re-
semble the real-world scenario where the ground truth can be created for only a
small portion of the text, and predictions are needed to be made on the rest.

Table 2.12 shows the performance of the best classifier under various scenarios
in identifying the sloka containing synonyms.

Table 2.13 shows some examples of wrongly classified sloka for the best perform-

ing scenario S3.

2.6.5.2 Synonym Identification

We next evaluate the performance of finding synonymous pairs from a synonym
sloka. Table 2.14 shows the performance in identifying groups of synonymous sub-
stances. We say that a group of substances is covered even if a single pair in the

group is identified. The result shows that even this has a scope for improvement.

Table 2.14: Group coverage in synonym pair identification.

Synonym Sloka Groups present Groups found Group coverage

Adhyaya 1 90 87 60 0.69
Adhyaya 2 54 53 39 0.74

50

Table 2.15 shows an example of a synonym sloka where none of the pairs are
extracted correctly. The correct synonyms are di~gehl, THg=il, UHETRIRI, T,
T, T, ATEYST, FATERT. We find the pairs (FTRe, &), (HIRHT, 9g), (SHIReT, TY),
(e, 3(9), (98, &), (W&, TYsU), (HYST, &), none of which are correct. The reasons
for the errors are shown in Table 2.16. Almost all the nouns are analysed incorrectly,

resulting in the group being completely missed.

Table 2.15: Sloka 96 from Adhyaya 1 of Bhavaprakasanighantu and its sandhi-samasa split.

Synonym Sloka Sandhi-Samasa Split

Tfeg &l THE T YA | Tfeg T THE= T UHE- IR |
Afecit ShIRAT T ITTYSUT AR 1R |1 fciT hiedl HeT arTYSaT -aTERT: 11QE

In addition to the errors discussed in Section 2.6.4.1, an additional error occurs
here, that of TextError. This refers to an error in the text corpus that we are work-
ing with. In particular, the original sloka contains the word 3@ while the corpus
we are working with, has that word split as I~ and @1, which results in this word
not being analysed correctly. After correcting this error manually, we now obtain a
valid pair (Ifg@T, 91D), thus covering this group.

We next analyse the finer errors that occur when some members of a synony-
mous group are identified correctly, but not all. Table 2.17 shows the performance.

Table 2.18 shows a synonym sloka from Adhyaya 1 (&darITieaRT:).

This sloka contains a total of 11 synonyms. We find pairs of synonyms involving
9 out of these, synonym pairs involving 8 of which are correct. We show examples
of some of the false negatives and false positives among the pairs of synonyms iden-

tified.

« False Positive: (37dT, 37dT)
The word 3T is split wrongly as 37a! and 312, and are then analysed sep-
arately. This results in both 3HdT and 3d! being in the same case (Y27 and

same number (Tshdd-), thus getting wrongly marked as a synonymous pair.

* False Negative: (33T, 3HdT)

The word 3HdT gets analysed as instrumental (?-Fﬂ'ilT) case of 3THT instead of

51

Table 2.16: Analysis of Sloka 96.

Word Root Analysis Is-Noun Is-Verb Error

EIC-S | et [?] False False TextError

hl %’{ [nom., ‘sg.’, ‘f’] False False TextError

e IHq [acc’, ‘sg’,‘n’] True False OversplitError
gl &q [‘nom., ‘sg’, ‘f’] True False OversplitError
El El [‘conj.’] False False

U[He UfHed [‘voc’, ‘sg’, ‘n’] True False OversplitError
HIHT hIGhT [nom., ‘sg.’, ‘f’] True False OversplitError
qtedt AfFet [acc’, ‘du’,‘n’] True False AnalysisError
& B [‘nom., ‘sg., €21 False False OversplitError
t KT [‘acc’, ‘du’, ‘m.’] True False OversplitError
Hal AT [nom., ‘sg.’, ‘f’] True False

Ell a1 [‘conj.’] False False OversplitError
JUsar - JYsy [‘nom., ‘sg’, ‘f’] True False OversplitError
g g [<?] False False OversplitError
qrae: dER [‘'voc’, ‘pl’, ‘m.’] True False OversplitError

Table 2.17: Performance of finding synonym pairs.

Sloka SynonymSloka P P TP Precision Recall F1

Adhyayal 231 90 534 562 369 0.66 0.69 0.67
Adhyaya 2 161 o4 300 348 214 0.62 0.71 0.66

nominative (J¥HT) case of AHAT. This results in a case mismatch with 39dT and

the pair is not extracted as a synonymous pair.

Table 2.18: Example of wrong pairs from Adhyaya 1 of Bhavaprakasanighantu.

Synonym Sloka Sandhi-Samasa split P P TP

BT HT TLAT SHIFE GAISHAl BXICIeh-3THET TLAT SIET TT-3HdT

ST T A Sl R 161 SHadt-ree - A s Ry nen - 0 S

2.7 Summary

In this chapter, we have described a framework to build a knowledge graph (KG) di-
rectly from Sanskrit texts, and use it for question answering in Sanskrit. Our frame-
work has multiple components and is based on rules and heuristics developed using

the knowledge of grammar of Sanskrit language and structure of the text.

52

One of the primary outcomes of this effort is the realization that for almost all the
components, the accuracy can be improved. Improvements on any of these compo-
nents will make the system better. A word analyser that produces all possible anal-
yses can benefit from a disambiguator which chooses from the generated options.
Usage of dictionaries, thesauri (such as Amarakosa) and Sanskrit WordNet needs to
be explored to see if they can help in understanding the structure of a word better.
Crowdsourcing tools as well as human experts can also help refine some of the steps.

This effort serves as a step towards the ultimate aim of automatically building a
full-fledged knowledge graph from a Sanskrit corpus and paves the way for a more

generic question answering framework.

Chapter 3

Sangrahaka: Annotation and

Querying Tool for Knowledge Graphs

We present a web-based tool Sangrahaka for annotating entities and relationships
from text corpora towards construction of a knowledge graph and subsequent query-
ing using templatized natural language questions. The application is language and
corpus agnostic, but can be tuned for specific needs of a language or a corpus. The
application is freely available for download and installation. Besides having a user-
friendly interface, it is fast, supports customization, and is fault tolerant on both
client and server side. It outperforms other annotation tools in an objective evalua-
tion metric. The framework has been successfully used in two annotation tasks. The

code is available from https://github.com/hrishikeshxrt/sangrahaka/.

We also describe our efforts on manual annotation of Sanskrit text for the pur-
pose of knowledge graph (KG) creation. We choose three chapters: Dhanyavarga,
Sékavarga and Mamsavarga from Bhavaprakasanighantu portion of the Ayurveda text
Bhavaprakasa for annotation. The constructed knowledge graph contains 1606 enti-
ties and 1707 relationships. Since Bhavaprakasanighantu is a technical glossary text
that describes various properties of different substances, we develop an elaborate
ontology to capture the semantics of the entity and relationship types present in the

text. To query the knowledge graph, we design 31 query templates that cover most of

https://github.com/hrishikeshrt/sangrahaka/

54

Table 3.1: Feature Comparison Sangrahaka with Various Annotation Tools

Feature WebAnno GATE BRAT FLAT doccano Sangrahaka
Distributed Annotation v v v v v v
Simple Installation v v v v
Intuitive v v v v v
Entity and Relationship v v v v v
Query Support v
Crash Tolerance v

the common question patterns. For both manual annotation and querying, we cus-
tomize the Sangrahaka framework previously developed by us. The entire system in-
cluding the dataset is available from https://sanskrit.iitk.ac.in/ayurveda/.
We hope that the knowledge graph that we have created through manual annota-
tion and subsequent curation will help in development and testing of NLP tools in

future as well as studying of the Bhavaprakasanighantu text.

3.1 Sangrahaka Software

For the purpose of knowledge graph focused annotation, it is important to have ca-
pabilities for multi-label annotations and support for annotating relationships.

Several text annotation tools are readily available to handle a wide range of text
annotation tasks including classification, labeling and sequence-to-sequence anno-
tations.. These tools include WebAnno [Yimam et al., 2013], FLAT [van Gompel, 2014],
BRAT [Stenetorp et al., 2012], GATE Teamware [Bontcheva et al., 2013], and doccano
[Nakayama et al., 2018].

While WebAnno is extremely feature rich, it compromises on simplicity. Fur-
ther, its performance deteriorates severely as the number of lines displayed on the
screen increases. GATE also has the issue of complex installation procedure and
dependencies. FLAT has a non-intuitive interface and non-standard data format.
Development of BRAT has been stagnant, with the latest version being published as
far back as 2012. The tool doccano, while simple to setup and use, does not support

relationship annotation. Thus, unfortunately, none of these tools supports all the

https://sanskrit.iitk.ac.in/ayurveda/

55

E Graph |
SN B Neodj
! Add H Graph

! Query h Database
v Templates |

Admin

Upload Create
Corpus Ontology

User Input

Figure 3.1: Workflow of Admin, Annotator and Querier roles and their interaction with each
other. Corpus creation, ontology creation, annotation, graph creation, graph querying are
the principal components.

Datastore

Annotator

Table

—
1 1
Cypher Explore
Query Answers @

Graph

Querier

desired features of an annotation framework for the purpose of knowledge graph
annotation. Further, none of the above frameworks provide an integration with a
graph database, a querying interface, or server and client side crash tolerance.

Thus, to satisfy the need of an annotation tool devoid of these pitfalls, we present
Sangrahaka. It allows users to annotate and query through a single platform. The
application islanguage and corpus agnostic, but can be customized for specific needs
of alanguage or a corpus. Table 3.1 provides a high-level feature comparison of these
annotation tools including Sangrahaka.

A recently conducted extensive survey [Neves and Seva, 2021] evaluates 78 an-
notation tools and provides an in-depth comparison of 15 tools. It also proposes a
scoring mechanism by considering 26 criteria covering publication, technical, func-
tion and data related aspects. We evaluate Sangrahaka and other tools using a the
same scoring mechanism, albeit with a modified set of criteria. The details are in Sec-

tion 3.1.3.

3.1.1 Architecture

Sangrahaka is a language and corpus agnostic tool. Salient features of the tool in-
clude an interface for annotation of entities and relationships, and an interface for

querying using templatized natural language questions. The results are obtained

56

Table 3.2: Roles and Permissions

Permissions Roles
Querier Annotator Curator Admin

Query v v v v
Annotate v v v
Curate v v
Create Ontology v
Upload Corpus v
Manage Access v

by querying a graph database and are depicted in both graphical and tabular for-
mats. The tool is also equipped with an administrators’ interface for managing user
access levels, uploading corpora and ontology creation. There are utility scripts for
language-specific or corpus-specific needs. The tool can be deployed on the Web
for distributed annotation by multiple annotators. No programming knowledge is
expected from an annotator.

The project relies on several key tools and technologies for its implementation.
These include Python 3.8 [Van Rossum and Drake, 2009], Flask 1.1.2 [Ronacher, 2011,
Grinberg, 2018], Neo4j Community Server 4.2.1 [Webber, 2012], SQLite 3.35.4 [Hipp, 2022]
for the backend and HTMLS5, JavaScript, Bootstrap 4.6 [boo, 2021], and vis.js [vis, 2021]

for the frontend.

3.1.1.1 Workflow

Figure 3.1 shows the architecture and workflow of the system.

The tool is presented as a web-based full-stack application. To deploy it, one first
configures the application and starts the server. A user can then register and login
to access the interface. The tool uses a role based access system. Roles are Admin,
Curator, Annotator, and Querier. Permissions are tied to roles. Table 3.2 enlists
the roles and the permissions associated with them. A user can have more than one
role. Every registered member has permission to access user control panel and view
corpus.

An administrator creates a corpus by uploading the text. She also creates a rele-

57

vant ontology for the corpus and grants annotator access to relevant users. The on-
tology specifies the type of entities and relationships allowed. An annotator signs-in
and opens the corpus viewer interface to navigate through lines in the corpus. For
every line, an annotator then marks the relevant entities and relationships. A cu-
rator can access annotations by all annotators, and can make a decision of whether
to keep or discard a specific annotation. This is useful to resolve conflicting anno-
tations. An administrator may customize the graph generation mechanism based
on the semantic task and semantics of the ontology. She then imports the gener-
ated graph into an independently running graph database server. A querier can
then access the querying interface and use templatized natural language questions
to generate graph database queries. Results are presented both in graphical as well

as tabular formats and can be downloaded as well.

3.1.2 Data Format

The tool relies on the widely-accepted JSON data format as its core method for man-
aging a range of tasks, encompassing corpus input and query template definitions.
For a comprehensive understanding of these formats, we present a detailed descrip-
tion along with sample examples. Further information can be found at https:

//github.com/hrishikeshrt/sangrahaka/tree/main/examples.

3.1.2.1 Corpus Format

The top-level structure of the corpus data is represented as a list, wherein each el-
ement corresponds to a line in the text. This hierarchical organization allows for
easy access and manipulation of individual lines within the overall structure.

Each line object within the list contains several key-value pairs that provide spe-
cific information about that particular line. The text key stores the actual text of the
line, capturing the textual content in its original form.

Additionally, the split key, if present, contains the line’s text with word segmen-

tation applied. This segmentation breaks down the line into individual words or

https://github.com/hrishikeshrt/sangrahaka/tree/main/examples
https://github.com/hrishikeshrt/sangrahaka/tree/main/examples

58

tokens, facilitating further analysis and processing at the word level.

For lines belonging to poetic verses, the verse key, when available, provides the
verse identifier associated with that particular line. This allows for the identification
and organization of lines within the broader context of the poem or verse structure.

Furthermore, the analysis key, if provided, contains linguistic information per-
taining to the line. This information is stored as a list of key-value pairs, with each
pair representing a specific token within the line. The analysis may include details
such as part-of-speech tags, morphological analysis, syntactic dependencies, or any
other relevant linguistic annotations associated with the tokens in the sentence.

The following is an example of a corpus file containing a single sentence.

[{
"verse": 1,
"text": "To sainted Narad, prince of those",
"analysis": {
"source": "spacy",
"tokens": [
{"Woxrd": "Narad", "Lemma": "Narad", "POS": "PROPN"},
{"Woxd": "prince", "Lemma": "prince", "POS": "NOUN"}
]
b
3}l

3.1.2.2 Query Template

The top-level structure consists of a list of query objects, each representing a spe-
cific query template. These query objects contain the following keys: gid, groups,
texts, cypher, input, and output. gid is used for grouping similar queries together in
the frontend. groups and texts are objects that store language names as keys, with
corresponding group names and query texts in those languages as their respective

values. If a query requires user input, it is indicated by placeholders such as {0}

59

or {1} within the query text. The input key contains a list of objects that provide
information for populating user-input elements in the frontend. Each object in this
list should have a unique id for the element and specify the type of input element.
Valid types include entity, entity_type, relation, and relation_detail.

Here is an example of a query template file that includes a single query:

[{
"gid": "1",
"cypher": "MATCH (pl)-[r:IS_FATHER_OF]->(p2) "

"WHERE p2.lemma =~ \"{@}\" RETURN *",

"input": [{"id": "p", "type": "entity"},1,
"output": ["pl", "x", "p2"1,
"texts": {"english": "Who is the father of {@}?",},
"groups": {"english": "Kinship",}

3l

3.1.2.3 Backend

The backend is written in Python, using Flask, a micro-webframework. Pluggable
components of the backend are a relational database and a Neo4j graph database

Server.

3.1.2.3.1 WebFramework Thewebframework managesrouting, templating, user-
session management, connections to databases, and other backend tasks. A Web
Server Gateway Interface (WSGI) HTTP server runs the Flask application. We use
Gunicorn [gun, 2021] running behind an NGINX [ngi, 2021] reverse proxy for this
purpose. However any WSGI server, including the Flask’s in-built server, can be

used.

3.1.2.3.2 Data Data related to user accounts, roles as well as corpus text, ontol-
ogy, entity annotations and relationship annotations are stored in a relational database.

This choice is made due to the need of cross-references (in database parlance, joins)

60

Table 3.3: List of important configuration options and their explanation

Option Explanation

Admin user Username, Password and E-mail of owner
Roles Configuration of Roles and Permissions
SQL config SQLAlchemy compatible Database URI
Neo4j config Server URL and Credentials

across user, corpus and annotation related information. Any relational database
compatible with SQLAlchemy [sql, 2021] can be used. We have used SQLite. An ad-
ministrator uploads various chapters in a corpus as JSON files using a pre-defined
format. Each JSON object contains text of the line and optional extra information
such as word segmentation, verse id, linguistic information etc. The structure of
JSON file corresponding to a chapter is explained in Section 3.1.2.1. This informa-
tion is then organized in a hierarchical structure with 4 levels: Corpus, Chapter,
Verse and Line. Additionally, there is an Analysis table that stores the linguistic in-
formation for each line. The system is equipped to deal with morphologically rich
languages. Lemmas (i.e., word roots) are stored in a separate table and referenced
in entity and relationship annotations. Every entity annotation consists of a lemma,
an entity type, a line number and user-id of the annotator. Every relationship anno-
tation consists of a source (lemma), a target (lemma), a relationship type, an optional

detail text, a line number and user-id of the annotator.

3.1.2.3.3 Knowledge Graph A knowledge graph is constructed using the entity
and relationship annotations. Neo4j is used as the graph database server to store
and query the KG. Connection to it is made using the Bolt protocol [bol, 2021]. Hence,
the graph database can exist independently on a separate system. Cypher query

language [cyp, 2021] is used to query the graph database and produce results.

3.1.2.3.4 Natural Language Query Templates Templates for natural language
questions are added by an administrator. A query template has two essential com-
ponents, a natural language question with placeholder variables and a Cypher equiv-

alent of the query with references to the same placeholder variables. Placeholder

61

variables represent values where user input is expected. Query templates are pro-
vided in a JSON file whose structure is given in Section 3.1.2.1. The natural language
query template, combined with user input, forms a valid natural language question,

and the same replacement in Cypher query template forms a valid Cypher query.

3.1.2.3.5 Configuration The application contains several configurable components.
The entire configuration setting is stored in a settings file. Table 3.3 explains some

important configuration options.

3.1.2.3.6 Utility Scripts Utility Python scripts are provided for tasks that need to
be performed in the background. The primary among these is a graph generation
script to generate JSONL [jso, 2021] formatted data suitable for direct import in the
Neo4j Graph Database. Sample scripts are also provided for generation of corpus
file and query template file. These can be easily customized to suit corpus specific

or application specific needs.

3.1.2.4 Frontend

The frontend is in form of a web application. HTML5 webpages are generated us-
ing Jinja template engine [jin, 2021], styled using Bootstrap 4.6 and made interactive
using JavaScript. The web-based user interface has several components that are
accessible to users based on their roles. Some of these components are shown in

Figure 3.2.

3.1.2.4.1 CorpusViewer Interface The corpusviewer interface consists of a row-
wise display of lines in a corpus. For such languages such as Sanskrit, German,
Finnish, Russian, etc. that exhibit a large number of compound words, the corpus
viewer can display the word-split output added by the administrator. Further, an
administrator may run other language specific tools to obtain any kind of semantic
and syntactic information about the components of the sentence as a list of key-value

pairs. The corpus viewer displays this information in a tabular format whenever a

AN Relation Prepare
Prepare Line 256343
Source
Line 256343
Bhavaprakasha Nighantu - er=enf: 256343
Entity Relation
Line + Text split ?
Type Detail
o 256343 g SR @fe: @ T Ai: g - @R @ T A v
s e e e« v S —
Root g T o @ ff @ @ Fif:
y
Gender m n m. Entities
[< 1 2 2 .
it u] Relations
Number g g el
Noun? b [’ fal fal t fal: fal false kil u] () = [IS_SYNONYN () n

English -

e

Figure 3.2: Corpus Viewer, Entity Annotator, Relation Annotator, Query Interface, Graphical
Result Interface, Tabular Result Interface

line is selected.

3.1.2.4.2 Annotator Interface The annotator interface is interlinked with the
corpus viewer interface. It contains two views, one for entity annotation and the
other for relation annotation. Adaptive auto-complete suggestions are offered based

on previously added lemmas and lemmas present in the line being annotated.

3.1.2.4.3 Query Interface The query interface makes use of pre-defined natu-
ral language query templates and combines them with user input to form Cypher
queries. A user may directly edit the Cypher query as well if she so desires. These
are communicated to the graph database using Bolt protocol and results are fetched.
Result of a Cypher query is a subgraph of the knowledge graph and is presented in
an interactive interface that allows users to zoom-in to specific areas of the graph,
rearrange nodes and save the snapshot of the graph as an image. Results are also
displayed in a tabular manner and can be exported in various file formats including

CSV, JSON, text, etc.

3.1.2.4.4 GraphQueryBuilder Interface Templatized queryinginterface, although
extremely easy to use, is unable to answer complex factual questions. For example,

while the query Which substance increases vata? can be covered by a single-edge

63

query, a query with multiple relations like Which variant of mudga increases vata?
cannot be handled by a single-edge query template. Note that the intent of the ques-
tion is to find a substance that is (1) a variant of mudga and (2) increases vata, and,
hence, both the edges are important. Another complex question, Which substances
of red colour and soft texture increase vata and decrease pitta? also falls into the same
category. While it is possible to construct templates to fit these questions, it is infea-

sible to try and imagine all possible question templates that may be posed.

Hence, we built a graph query builder interface. This interface allows the user to
add nodes and edges and construct an arbitrary graph structure. The user can also
specify node and edge specific properties. After the construction of the graph struc-
ture, the interface lets user generate the corresponding Cypher query for querying

the KG system.

3.1.2.4.5 Graph Browser Interface The graph browser interface offers an intu-
itive means of exploring the knowledge graph by navigating through the neighbor-
ing nodes of any displayed node. Whenever a user clicks on a visible node, they are
presented with two options: (1) to view all the neighbors of the clicked node in ad-
dition to the current graph being shown, or (2) to view the neighbors in place of the
current graph. This functionality provides users with flexibility and control over
their exploration, allowing them to seamlessly expand their understanding of the

graph’s interconnected information. Figure 3.3 showcases this interface.

3.1.2.4.6 Admin Interface The administrator frontend allows an administrator
to perform tasks such as change users’ access levels, create corpus, upload chapters
in a corpus, and create ontology. Adding a new corpus requires two steps: corpus
creation and chapter upload. The corpus creation step refers to creating a new entry
in the Corpus table along with a description. Once a corpus has been added, chapters

associated with the corpus can be uploaded.

64

. &l o)
Sy 208
oo
LS13v0Rgy >‘,\l,():f(" . W
IS!}\\NHHJQ'FIUEAE 11:}5,\}&”:5-\& g AL
(SSOREANFIORC , =l ——IS TvPE oF
aw
5 &,
o &
Figure 3.3: Graph Browser Interface
Edit Relation Type x
Edit Entity Type x Relation i [l 0] — e
Node qenRa Current 31y g 39 / s Increased by >
Current o / Effect on body - Replacement 31 g 3R / is Increased by -
Replacement @ / EFfect on body - Inc
Body 3% qef7H 37 / is Increased by
STARE-9TT: / Part of Body 31% g 319 / is NOT Increased by

eee— i/ Effect onbody o

Figure 3.4: Curation Interfaces for Editing Node Label and Relation Label

3.1.2.4.7 Ontology Creation The ontology creation interface allows an adminis-

trator to add or remove node types and relation types. If an entity or relation type

is being used in an annotation, removal of the same is prevented.

3.1.2.4.8 Curation Curation isperformed through the annotation interface. A cu-

rator can see annotations by all annotators and can choose to keep or remove them

as well as add new annotations. We have created some special interfaces for com-

monplace curation tasks such as changing a node’s category, or changing the type of

relation between two nodes. These interfaces can be accessed through the context

menu (i.e. by right clicking a node or a relation in the list). They are illustrated in

Figure 3.4.

65

Table 3.4: Annotation tasks performed using Sangrahaka

. Ontology Annotations
Corpus Lines Annotators Nodes Relations Nodes Relations Progress
BPN [bpn, 2016] 180 5 25 30 602 778 100%
VR [val, 2021] 17655 9 107 132 1810 2087 54%

3.1.2.5 Fault Tolerance

Corpus viewer and annotation interface act as a single-page application [wik, 2021b]
and make use of AJAX [wik, 2021a] calls to communicate with the server. Entity
and Relation annotation processes have two steps, ‘Prepare’ and ‘Confirm’. Once
an entity or a relation is prepared, it is stored in a browser based localStorage
[Hickson, 2021] that persists across browser sessions and is, thus, preserved even if
the browser crashes. Once a user clicks ‘Confirm’, an attempt to contact the server
is made. If the attempt is successful and the data is inserted in the database suc-
cessfully, the server returns success and the data associated with that annotation
is cleared from the local storage. If the server returns failure, the data persists.
Thus, a server crash does not affect the user’s unconfirmed annotations. Further,
if a page is already loaded in the browser and the server crashes, a user can still
continue to annotate. The unconfirmed entities and relations are color coded and
can be easily located later to confirm once the server is restored. Thus, the applica-
tion is fault-tolerant on both client and server side. This is an important feature that

distinguishes Sangrahaka from other tools.

3.1.3 Evaluation

The tool has been used for two distinct annotation tasks: (1) a chapter from a medi-
cal text (Ayurveda) corpus in Sanskrit (BPN) [bpn, 2016], and (2) full text of the epic
Ramayana in English (VR) [val, 2021]. Table 3.4 presents details of these tasks.

Due to the nature of semantic annotation, where an annotator usually has to
spend more time on mentally processing the text to decide the entities and relation-

ships than the actual mechanical process of annotating the text, and the fact that

66

Table 3.5: Annotator Ratings for Sangrahaka across various metrics

Metric Score
Looks and feel 4.7
Ease of use 4.4
Annotation Interface 4.5
Querying Interface 4.6
Administrative Interface 4.7
Overall 4.5

O lT‘CCElO I
Tiked ,Mezfjce e

Looking pt bitity
s Very Ser

**enre 1"61"11‘5

Lemma.
La*:g-Re"tlfYGI ea J0ne

; e 2 Searchsugges um
-Use & :

Sida

EJ:P:IK‘I'OI'S Entities Between ey+
Word]f]_d t d uto

“’mplf;ftAnnotatlon Mipdralist

1 Appearance ces Extremely

Figure 3.5: Wordcloud created using comments provided by users in the survey

annotations are done over several sessions of various lengths over an extended pe-

riod of time, time taken for annotation is not an adequate metric of evaluation.

3.1.3.1 Subjective Evaluation

As a subjective evaluation, a survey was conducted among the annotators from two
annotation tasks. They were asked to rate the tool on a scale of 5 in several metrics.
The survey also asked them to describe their experience with Sangrahaka. A total of
10 annotators participated in the survey. We received an overall rating of 4.5 from
10 annotators.

Table 3.5 shows the ratings given by the users. Figure 3.5 shows a word-cloud

representation of the testimonials provided by the users.

3.1.3.2 Objective Evaluation

To perform the objective evaluation, we adopted the methodology employed in the

study conducted by [Neves and Seva, 2021]. They utilized a set of 26 criteria, catego-

67

Criteria \ Tools

ID Description Weight ‘ WebAnno doccano FLAT BRAT ‘ Sangrahaka
P1 Year of the last publication 0 1 0 0 1 1
P2 Citations on Google Scholar 0 1 0 0 1 0
P3 Citations for Corpus Development 0 1 0 0 1 0
T1 Date of the last version 1 1 1 1 0.5 1
T2 Availability of the source code 1 1 1 1 1 1
T3 Online availability for use 1 0 0 1 0 0
T4 Easiness of Installation 1 0 1 1 0.5 1
T5 Quality of the documentation 1 1 1 1 1 0.5
T6 Type of license 1 1 1 1 1 1
T7 Free of charge 1 1 1 1 1 1
D1 Format of the schema 1 1 1 1 0.5 1
D2 Input format for documents 1 1 0.5 1 1 1
D3 Output format for annotations 1 1 1 1 0.5 0
F1 Allowance of multi-label annotations 1 1 0 1 1 1
F2 Allowance of document level annotations 0 0 0 0 0 0
F3 Support for annotation of relationships 1 1 0 0 1 1
F4 Support for ontologies and terminologies 1 1 0 1 1 1
F5 Support for pre-annotations 1 0.5 0 0.5 0.5 0
F6 Integration with PubMed 0 0 0 0 0 0
F7 Suitability for full texts 1 0.5 0.5 1 1 1
F8 Allowance for saving documents partially 1 1 1 1 1 1
F9 Ability to highlight parts of the text 1 1 1 1 1 1
F10 Support for users and teams 1 0.5 0.5 1 0.5 0.5
F11 Support for inter-annotator agreement 1 1 0.5 0 0.5 0.5
F12 Data privacy 1 1 1 1 1 1
F13 Support for various languages 1 1 1 1 1 1
A1 Support for querying 1 0 0 0 0 1
A2 Server side crash tolerance 1 0 0 0 0 1
A3 Client side crash tolerance 1 0 0 0 0 1
A4 Web-based/distributed annotation 1 1 1 1 1 1

Total 25 18.5 15.0 195 175 20.5

Score 0.74 0.60 0.78 0.70 0.82

Table 3.6: Evaluation of Sangrahaka in comparison with other annotation tools using objec-
tive evaluation criteria

rized into four groups: publication, technical, data, and functional. For our evalua-
tion, we excluded parameters related to publication and citations. Additionally, we
removed criteria (F2 and F6) that were not met by any of the tools in the comparison,
as they were not applicable for score calculation. Instead, we introduced four new
criteria: (A1) support for querying, (A2) server-side crash tolerance, (A3) client-side

crash tolerance, and (A4) distributed annotation support.

Using this modified set of 25 criteria, we re-evaluated the top-scoring tools identi-
fied in the study by [Neves and Seva, 2021] (WebAnno, BRAT, and FLAT), along with
Sangrahaka. The evaluation results, illustrated in Table 3.6, highlight that Sangra-
haka surpassed the other tools with a score of 0.82, outperforming FLAT (0.78), We-

bAnno (0.74), and BRAT (0.70).

68

3.2 Semantic Annotation of Semi-structured Ayurveda

Text

We now describe the application of Sangrahaka for a real-world semantic annota-

tion task on the Ayurveda text Bhavaprakasanighantu.

3.2.1 Introduction

Sanskrit is one of the most prolific languages in the entire world, and text in San-
skrit far outnumber other classical languages. Consequently, with the advance-
ment of natural language processing with the aid of computers, there has been a
surge in the field of computational linguistics for Sanskrit over the last couple of
decades. This has resulted in development of various tools such as the Samsaadhanii
by [Kulkarni, 2016], The Sanskrit Heritage Platform (SHP) by [Goyal et al., 2012], San-
skrit Sandhi and Compound Splitter (SSCS) by [Hellwig and Nehrdich, 2018], Sanskrit
WordNet (SWN) by [Kulkarni et al., 2010], etc. for linguistic tasks such as word seg-
mentation, lemmatization, morphological generation, dependency parsing, etc. De-
spite this, many fundamental processing tasks such as anaphora resolution and named
entity recognition that are needed for higher-order tasks such as discourse process-
ing, are either not available or have a long way to go. Combined with the fact that
Sanskrit is a morphologically rich language, for tasks such as machine translation,
question answering, semantic labeling, discourse analysis, etc. there are no ready-
to-use tools available.

A standard way of capturing knowledge from a text is through the use of know!-
edge bases (KB). It is a form of data repository that stores knowledge in some struc-
tured or semi-structured form. A knowledge graph (KG) is a particular form of knowl-
edge base that uses the graph data structure to store knowledge. In a KG, nodes rep-
resent real-world entities, and edges represent relationships between these entities.

Knowledge about these entities and relationships is typically stored in the form of

69

| N
1S _DECREASED BY

IS_INCREASED/BY

/DECREASED, BY IS_VARTANT OF pu

IS DECREASED BY IS_VARIANT OF

IS_VARIANT_OF L5 _SYNONYM_OF
IS PROBERTY]OF
IS PROPERTY OF HelTIYH
1S _PROPERTY_OF IS_WORSE THAN
Lemma: TEE
Type: SUBSTANCE
Line: 256346,256351
IS PRORERTY OF STMELAR_TO Annotator: 4
hd IS LOCATION OF
Y \ q;zﬁ-ﬂ@

TeIEgT

Figure 3.6: Example of a Knowledge Graph (KG).

triplets (subject, predicate, object) denoting the relationship predicate a subject has
with an object. For example, (Panini, Is-Author-Of, Astadhyayi) captures the knowl-

edge nugget ‘Panini is the author of Astadhyayr.

An important usage of KGs is automated question answering (QA) where the task
is to automatically find answers to questions posed in a natural language. It is an
important high-level task in the fields of Information Retrieval (IR) and Natural Lan-
guage Processing (NLP). Questions can be either from a specific closed domain (such
as, say, manuals of certain products) or from the open domain (such as what Google
and many other search engines attempt to do). Also, they can be factual (phrase-
based or objective) or descriptive (subjective, such as “‘Why’ questions). Since its in-
troduction by [Voorhees, 1999], one of the main approaches for the question answer-
ing task has been through use of knowledge bases [Hirschman and Gaizauskas, 2001,

Kiyota et al., 2002, Yih et al., 2015].

Figure 3.6 shows an example of (a snippet of) a knowledge graph. The triplets are
depicted visually. It contains several nodes (entities) such as madhili (H&gl), nandi-

mukha (:|T<ﬁﬂ'€§), pitta (fo=m), snigdha (R=79), etc. and edges (relationships) including

70

‘is Decreased by’, ‘is Property of’, ‘is Variant of’, etc. The graph also shows properties

associated with the entities and the relationships.

There exist various automated approaches for constructing knowledge bases
from a corpus of text [Dong et al., 2014, Pujara and Singh, 2018, Mitchell et al., 2018,
Wu et al., 2019]. These attempts are fairly successful for languages such as English
where the state-of-the-art in NLP tools is more advanced. However, due to paucity
of such tools in Sanskrit, automated construction of knowledge bases in Sanskrit,
to the best of our understanding and knowledge, is only moderately successful. As
described in Chapter 2 we previously attempted to automatically extract all human
relationships from Itihasa texts (Ramayana and Mahabharata) and synonym relation-
ships from Bhavaprakasa. We reported that for an objective natural language query,
the correct answer was present in the reported set of answers 50% of the times. We,
however, could not report how accurately a triplet is automatically extracted, due

to the lack of ground truth for the evaluation.

A more viable and accurate alternative of constructing knowledge bases is through
the route of human annotation. In addition to information extracted from a corpus,
the knowledge base may use information that is not directly mentioned in the cor-
pus, such as world knowledge (for example, a person is a living being) or an ontology
or a fact specific to the domain of the corpus. Human annotators are typically aware
of the domain; although, depending on the task, they need not always be experts in
the subject. For example, vata (d1d) has a general meaning as ‘wind’, but in the con-
text of Ayurveda, it refers to the tridosa (B29) by the name of vata. This is not directly

mentioned in every Ayurveda text, but any domain expert is aware of this fact.

In this work, we follow the human annotation process of creating a knowledge
graph. We annotate three chapters: Dhanyavarga, Sakavarga and Mamsavarga from
the Bhavaprakasanighantu (HTGUeIIEUE) portion from the Ayurveda text Bhavaprakasa
(|’ as the corpus. Bhavaprakasa is one of the most prominent texts in Ayurveda,
which is an important medical system developed in ancient India and is still in prac-

tice. A nighantu (ﬁzmg) in the Indic knowledge system is a list of words, grouped into

71

semantic and thematic categories and accompanied by relevant information about

these words such as meanings, explanations or other annotations. It is analogous to

a glossary in purpose, but differs in structure. In particular, the Bhavaprakasanighantu
text, like most of Sanskrit literature, is in padya (verse) form. The text, while loosely

following a theme or a structure, is still free flowing. Sanskrit literature contains a

large number of such nighantu texts either as stand-alone books or as parts of other

books.

The nighantu texts, owing to their partial structure are, therefore, amenable to
construction of knowledge bases using human annotation. Further, since they con-
tain a wealth of information, they are important resources for building knowledge
bases that can be automatically questioned. A benefit of the presence of structure in
nighantu texts is that annotators need not be domain experts as long as the structure

is clear.

3.2.1.1 Contributions

The contributions of this work are three-fold.

First, we describe a process of constructing a knowledge graph (KG) through
manual annotation. This helps to capture the semantic information present in the
text that is extremely difficult to do otherwise using automated language and text
processing methods. The proposed annotation process also enables capturing rela-
tionships with entities that are not named directly in the text. We further discuss the
curation process and the optimizations performed during the process of knowledge
graph creation from the perspective of querying efficiency.

Second, through careful examination of the different types of entities and re-
lationships mentioned in Bhavaprakasanighantu, we create a suitable ontology for
annotating the text. We believe that this can be a good starting point for building an
ontology for other Ayurveda texts, and in particular, glossaries.

Third, we annotate three complete chapters from the text (Dhanyavarga, Sakavarga

and Mamsavarga), and create a KG from the annotations. For this purpose, we de-

72

Query - Graph
Templates "1 Query

Tabular

\ 4

Corpus Ontology Knowledge Answer

Graph

Graphical

Annotation Curation

Figure 3.7: Workflow of semantic annotation for KG construction and querying

ploy a customized instance of Sangrahaka, an annotation and querying framework
developed by us previously [Terdalkar and Bhattacharya, 2021a]. We also create 31
query templates in English and Sanskrit to feed into the templatized querying inter-
face, that aids users in finding answers for objective questions related to the corpus.

The system and the dataset can be accessed at https://sanskrit.iitk.ac.

in/ayurveda/™.

3.2.1.2 Outline

Figure 3.7 shows the workflow of our proposed method. The first step after inspec-
tion of the corpus is of ontology creation. After creating a relevant ontology, i.e.,
specifying what kinds of relationships and entity types are there in the corpus, an-
notation is performed. Using the entities and relationships captured through anno-
tation, a knowledge graph is constructed. The knowledge graph can be queried with
the help of query templates to retrieve answers for templatized natural language
questions. Answers are presented in both tabular and graphical formats.

The rest of the chapter is organized as follows. Section 3.2.2 motivates the prob-

lem of creating a knowledge graph using manual annotations. Section 3.2.5 de-

Please create an account and contact authors requesting access to annotation or querying inter-
face.

https://sanskrit.iitk.ac.in/ayurveda/
https://sanskrit.iitk.ac.in/ayurveda/

73

scribes the annotation and curation process along with the construction of knowl-

edge graph. Section 3.2.6 explains the querying mechanism.

3.2.2 Motivation for Manual Annotation

To the best of our knowledge, the state-of-the-art in Sanskrit NLP and IR is not ad-
vanced enough for automatic construction of knowledge bases from text. One of the
first efforts towards automatic construction of knowledge graphs from Sanskrit text
was made by [Terdalkar and Bhattacharya, 2019a]. The framework described does
not yield results comparable to state-of-the-art models for English due to errors in
various stages of the construction pipeline. As mentioned earlier, the success rate
for even single relationships was not very high.

In this work, we discuss the issues with the Sanskrit state-of-the-art linguistic
tools and the need for manual annotation for a semantic task such as automatic cre-

ation of knowledge graphs.

3.2.2.1 Word Segmentation

Sanskrit texts make heavy use of compound words in the form of sandhi and samasa.
Word segmentation, that splits a given compound word into its constituents is, there-
fore, an important need in Sanskrit. Notable works in this area are The Sanskrit Her-
itage Platform (SHP) [Huet, 2009, Goyal et al., 2012], Sanskrit Sandhi and Compound
Splitter (SSCS) [Hellwig and Nehrdich, 2018, Krishna et al., 2016, Krishna et al., 2021].
Treating the segmentation task as a combined splitting of both sandhi and samasa,
while useful, does not fit well into the pipeline described in Chapter 2, where the
split output is then passed to a morphological analyser. An example is splitting of the
word maharsi as mahat + rsih, which while correct as a samasa-split, if passed to a mor-
phological analyser as two separate words, produces an analysis? of the word mahat
independently that does not fit the semantics of the word or the context. Earlier

[Terdalkar and Bhattacharya, 2019a], we applied SSCS followed by SHP. This results

2Analysis: mahat (n. sg. acc. | n. sg. nom.)

74

in a word such as ramalaksmanau getting split into two words rama and laksmanau
due to SSCS resulting in the word rama getting assigned the vocative case by SHP. We
had applied a heuristic to resolve these errors, where the grammatical analysis of
the second word was copied to the first word as well. However, this heuristic would

change the semantics of the word ramalaksmanau.

3.2.2.2 Morphological Analysis

Sanskrit is a highly inflectional language. In Sanskrit, words are categorized as sub-
anta (noun-like)® and tinanta (verb-like). Morphological analysis is the task of iden-
tifying the stem (pratipadika or dhatu) of the given word form, along with other rel-
evant linguistic information. Notable works in this area are by [Goyal et al., 2012]
and [Kulkarni, 2016]. These tools perform the best when the input given is without
sandhi. If, however, the input also contains splits of samasa as generated by tools de-
scribed in the previous section (Section 3.2.2.1), the morphological analysers treat it
as a separate word, resulting in an analysis of the word that may be correct on the
syntactic level, but not so in the context of the sentence. In the case of samasa, if the
morphological analyser is provided the text with hyphens (‘') separating the com-
ponents, the analyser produces correct analysis. However, the treatment of word
segmentation as a joint task, and the lack of differentiation between a sandhi and

samasa splits in the SSCS output makes this a difficult task.

3.2.2.3 Other Linguistic Tasks

A dependency parser for Sanskrit from Samsaadhanii [Kulkarni, 2016] performs best
when the sentences are in an anvaya order (prose form). Further, it is based on a
fixed vocabulary and, therefore, when inflected forms of words from outside the
vocabulary are encountered, it fails to parse the sentence. For example, a word
salidhanya is not present in the vocabulary, so a sentence containing that word does

not get parsed successfully.

*Words that behave like nouns insomuch as that they exhibit gender, case, and number.

75

[Krishna et al., 2021] in their recent work claim to be able to perform poetry-
to-prose linearization and dependency parsing. However, we have not been able
to obtain the source code or a functional interface to evaluate it for our data (we

contacted the authors).

Another hurdle in the poetry-to-prose linearization is that the sentence bound-
aries are often not clearly marked. In general, a semantically complete sentence
may span over multiple verses. On the other hand, at times a verse may contain
multiple sentences as well. This can be seen in the sample of 10 verses given in Sec-
tion 3.2.3.1. Thus, extracting sentences with proper sentence boundaries is also a

difficult task.

3.2.2.4 Semantic Information Extraction

Extracting the semantics of a sentence is a very important step in the construction
of a knowledge graph. Automatic KG construction frameworks for English such as
[Auer et al., 2007, Suchanek et al., 2007] extract semantic information from various
information sources including Wikipedia articles and info-boxes. One of the chal-
lenges faced in this task is that the same concept can be expressed in English in
numerous ways, such as “birthplace” or “place of birth”. The issue of expressing a
concept in more than one ways is extremely significant and much more severe for
Sanskrit due to its semantic richness. In particular, the process of samasa creates
long and semantically rich words.

Table 3.7 highlights this phenomenon. The first column contains the concept
while the second column enlists the words used in Dhanyavarga to express that con-
cept. A “concept” captures the semantics of a word or a phrase.

It can be noted that even in the span of 90 verses, there are more than 10 different
ways used to express the same concept ‘(a substance) decreases vata’. In addition to
that, the word vata itself can be part of another compound, coupled with other words
as can be seenin the example ‘decreases vata and pitta’. There are more than 5 usages

of this complex concept, which is a superset of the earlier concept. Moreover, these

76

Table 3.7: Semantic variations due to richness of Sanskrit through examples from
Dhanyavarga.

Concept Words or Phrases
increases bala balya, balada, balavaha, balaprada, balakara, balakrt
increase vata vatala, vatakrt, vatakara, vatajanaka, vatajanani,

vatatikopana, vataprakopana, vatavardhana, vatakopana
decreases pitta pittaghna, pittapranasana, pittapraséamana, pittahara, pit-
taghni, pittapaha, pittajit, pittahrt, pittanut, pittavinasini
decreases vata and pitta vatapittaghna, pittavataghna, pittavatavibandhakrt, vatapit-
tahara, vatapittahrt

are not the only ways in which the concept of increasing vata is expressed.

There are numerous other words that can combine with the word vata in the
form of samasa to indicate the concept of decrement for multiple entities at the same
time. Moreover, in such cases, where a samasa is used, the order of vata and pitta
could be reversed as well. Further, this list is not exhaustive for a specific concept,
and the number of ways to denote the same concept can become computationally
intractable.

One can observe that there are some common suffixes used in similar concepts.
However, firstly, there is no exhaustive list of suffixes available associated with a
particular concept. Second, the suffixes have different concepts in different con-
texts. For example, the suffix -ghna (-%) in the context of Ayurveda, or specifically
of tridosa, means ‘to decrease’, e.g., pittaghna (fU=9). The same suffix in the context of
a person may mean ‘to kill’, e.g., satrughna (R1&) — one who Kkills his enemies (Satru).

Thus, using a fixed set of suffixes may not be a feasible solution.

To the best of our knowledge, there is no existing system for Sanskrit that can
extract such semantic information in either a generic sense or in a specific con-
text. Amarakosa Knowledge Net [Nair and Kulkarni, 2010] and Sanskrit WordNet
[Kulkarni et al., 2010] are also limited in their scope. For example, none of the words
listed in the Table 3.7 to express the concept of ‘increasing bala’ can be directly found
in either of these two resources. These are examples of samasa or words formed from
bala through the application of taddhita or krdanta suffixes. Due to the recursively

generative grammar of Sanskrit, it is impossible to produce an exhaustive list of all

77

possible derivations from a word.

3.2.2.5 Need for Annotation

Issue of compounding errors is relevant to any NLP pipeline, where individual parts
of the pipeline have their own error rates. The success rate of the entire pipeline,
being a multiplicative factor of the individual success rates (since all the parts have
to be accurate for the entire task to be accurate), is significantly lower. Thus, the
pipeline for the automated question answering task that requires modules such
as word segmentation, morphological analysis, part-of-speech tagging, dependency
parsing, etc. has a very low accuracy. Further, the lack of semantic analysis tools
or systems is a major hurdle in semantic tasks such as construction of knowledge
graphs. Thus, even if the accuracy of the individual parts are improved significantly,
the final semantic labeling remains a bottleneck.

We highlight this fact by taking an example of the first ~ 10% of the Dhanyavarga,
i.e., 10 verses corresponding to 21 lines. We have manually segmented the words in
these lines and also converted the sentences to anvaya order. The first 10 verses
correspond to a total of 14 prose sentences. The original text in verse format, in the
sandhi-split format, and in anvaya format, is given in Section 3.2.3.1.

There are a total of 35 occurrences of sandhi and 50 occurrences of samasa in
the text. SSCS is able to identify 34 of the sandhi (with an accuracy of 0.97) and 34
occurrences of samasa correctly (with an accuracy of 0.68). However, the tool does
not differentiate a sandhi from a samasa. Therefore, when passed to the SHP it is
likely to obtain incorrect analysis.

A single word-form in Sanskrit can have numerous valid morphological analy-
ses. If there are NV words in a sentence, and every word has a; analyses possible, then
there are I, a; possible combinations for the correct analysis of the sentence. SHP
and Samsaadhanii both rank these solutions based on various linguistic features,
and after pruning the unlikely ones, present the feasible solutions. For automatic

processing pipelines, a particular choice of the solution is required, and the solution

78

presented as the best by the tools, i.e., the first solution, is a natural choice. Thus, we
present the evaluation by choosing the first solution.

We pass the manually created sandhi-split corpus through SHP for morpholog-
ical analysis.* There are an average of 9 solutions per line (ranging from 0 to 72)
reported. We evaluate based on the first reported solution.

There are 103 words, after manually splitting sandhi. SHP could not analyse 21
words, and wrongly analysed 14 words, resulting in an overall accuracy of 0.66. Fur-
ther, SHP split 34 words, of which 8 were incorrect splits, resulting in an accuracy
of 0.76 for samasa-split.

Additionally, we pass the anvaya-order sentences to the dependency parser tool
by [Kulkarni, 2016]. We also manually add missing verbs (adhyahara forms such as
asti, santi, etc.) due to that being a requirement of the parser. Without samasa split
markers, the dependency parser manages to parse only 1 out of 14 sentences, while
with the samasa markers, it can parse 6 out of 14. Out of the 6 sentences that pro-
duce a dependency parse tree, 4 are simple 3-word sentences (sentences 2, 3, 4, 6 in
Section 3.2.3.1). In the other 2 instances (sentences 7, 10), errors were found in the
dependency parse trees.

For example, consider a line from $loka 2:

Sanskrit: (giaTiaeh &EUTE) (JUITIST deed)

IAST: (kangvadikam ksudradhanyam) (trnadhanyafica tatsmrtam)

Meaning: kangu etc. are types of ksudradhanya. It (ksudradhanya) is also
called trnadhanya.

Anvaya: SJEUTIH HSTATIGHA (HARA) | Id qUren=aH T TaH (31Rd) |

There are two sentences in this line, as can be seen by the boundary markers
and anvaya text. Figure 3.8 shows the dependency parse for these two sentences.
The dependency parse for the first dependency tree is correct. However, even for

the sentences that get a correct dependency parse, the dependency relations we get

*We keep a timeout of 60 seconds, within which, if the analysis is not found, we report the analysis
as missing, i.e., 0 solutions for that line.

79

-

FGAAATERIT

Parse: | of 16; Cost = 94
Parse: 1 of 1; Cost = 25

Figure 3.8: Dependency parse trees for sentences from sloka 2.

are karta and kartrsamanadhikarana which, while grammatically correct, still do not
help in capturing the semantic concept of the sentence that kangu is a type of ksudrad-
hanya. Also, tat in the second sentence is an anaphora of ksudradhanya from the first
sentence. Thus, the intended relation that trnadhanya is a synonym of ksudradhanya
cannot be extracted without a module for anaphora resolution. Yet again, to the best
of our knowledge, there is no such co-reference resolution system for Sanskrit.

More importantly, no existing tool has a capability of performing semantic tasks,
which are a requirement for knowledge extraction. Manual annotation, therefore,
is the only way to capture the semantic relations. In addition, it bypasses the entire
NLP pipeline and, thus, has a high potential for creating a question answering sys-
tem that is much more accurate and reliable than a system based on automatically
created knowledge graphs.

Another prevalentissue is the lack of datasets for training and evaluation of tasks
such as question answering or creation of knowledge bases. Creation of knowledge
bases through manual annotation is, thus, of utmost importance both for the ac-
tual task of question answering and for further research in the field, including auto-
mated knowledge base construction since these may act as ground-truth benchmark

datasets for evaluation of future automated tools.

3.2.3 Corpus

Bhavaprakasanighantu is the nighantu portion of Bhavaprakasa. It contains a list and

80

description of various medicinally relevant plants, flowers, fruits, animals, grains,
animal products, metals, prepared substances, etc. These are divided into 23 chap-
ters called vargas.

A general structure followed in the Bhavaprakasanighantu is as follows,

» Substances are semantically grouped in chapters. For example, all grains ap-
pear in the chapter Dhanyavarga, all vegetables appear in the chapter Sakavarga

and all types of meats appear in the chapter Mamsavarga.

» Each chapter contains several virtual sections pertaining to a single substance.
Only when a substance has been described in entirety, discussion about an-

other substance starts.®

» Each section about a substance has the following information:

Synonyms, if any, of the substance

Properties, e.g., color, smell, texture

Effects, e.g., effect on tridosa (vata, pitta, and kapha)

Symptoms and diseases treated or cured by the substance

Variants, if any, of the substance

Properties of each variant, and their distinguishing characteristics

Comparison between the variants, if possible

Time and location where the substance is found or grown, if relevant

* The order of information components about a substance within a section may

vary.

The entire Bhavaprakasanighantu contains 2087 verses, corresponding to 4201
lines. We have chosen three chapters: Dhanyavarga, a chapter about grains, Sékavarga,

a chapter about vegetables and Mamsavarga, a chapter about meats. Together, these

SThere is, however, no indication in the original text that a section/substance has ended, and a
new one has started. It must be inferred by reading the text.

81

contain a wide variety of entity types and relations. In total, these three chapters

contain 340 verses, corresponding to 690 lines.

3.2.3.1 Sample of Text from Dhanyavarga

We present here, an extract from Dhanyavarga used in Section 3.2.2. Table 3.8 con-
tains the first 10 verses from Dhanyavarga and a version with sandhi resolved. The

sentence boundaries are denoted using ‘(’ and ‘)’ markers.

Table 3.8: First 10 verses from Dhanyavarga of Bhavaprakasanighantu

Original Text Sandhi Split

(arferen= g U garde Qferen=aH siifeer=am Jerem=aH e
ity gfgaaficgh grusaeH ¢) TRl glgaaH 3fa I aIUsTERT
(QAT TS) (SiiEd: SiSded:) Qe THATTT: Hied: Sivehed:

(TaTiaeh Yerud) (garE ey) AT [HUTIH e RIfFae=aey

(hgTaTiash &gUT) (JUIUFIST AoaH R) SherdliaehH, &R~ JUILTEIH T dd S 2
(UG T el GH=T: QT TT: 3) HUSH T SeFreT: BH=T: ATeT: FT: 3

(THMTC: TheH: UTUGeh: AHHTEA: THLTT: TeheTH: UUGh: AFTEd:

GTE[ch: ThoHeh! HElQTei sl goeh: 8 TEh: heHeh: HEILNTel: T goeh: 8
qEaTUgeh: JUSIIcheell HiguHEdw: qEaTUgeh: JUSIich: qeT HigTHEh:
S sTeh! B! TYgsueh: & STS[: FHIoah: gI: TIYSIdh: 4
SCUTET: ATeT: Hied Tgdl Tgagrs:) SCUTHT: ATCT: Hied T6d: TgaT:

(FrfaaReiaed FHEAT AT HIfSaT: &) TefaEaRefId: O THET: 7 3 9T &

(T TERT: RATYT I dgleuddd: Me: FERT: RATeT: e Sgeuadd:
] TTHE! ST Tl A1 FEuT: HIT: TTHE: STAT: TAT: IoAT: | gt
FUTHeTRTRT: QfTdT: TORTeAT aretreaern o) SATTeehhT: $ffaT: FORTeAT: T qer ©

(QAT STHSSTIAT: ST THUTIchT: QITETA: CTEHSSITAT: HIT: AGUTIR:
GEIAYRINTY F&T: SASHTIHIOT: ¢) GUAGRIT: T F&T: SASHTIHYUT: ¢

(SR ITATURTEAT TRa: FHHYheT: SR TATUTEAT: TRA: FHHEhA:
FUTHICUEeh] HeAT9d Jellaar: §) FET: T Tcuaaeehl: A T U9 ga1agl: §
(TS Td1Gd: TR EEAT ardalear: LIAS: TaTed: U heAT: aTaaiear:

fepfomfxichT: smumaney fadTeh shgeht 31f 20) fopfSarg foht: shema: = faures shgent: M go

3.2.3.2 Poetry-to-Prose Conversion of Verses from Table 3.8

We next list the prose version of the verses listed in Table 3.8 above.

10.

11.

12.

13.

14.

82

. AT SR JciterehH YRy RIS et 3fd gTausgenr I (1) |

N

QTS THLATTET: (Tfe) |
died: wiveey: (A=)l
Q[T FaTieeRH (31Ra) |

. TRITrer=rere qamem (Ra) |

SIGHTIH hgrdliaehH (AfRd) |

. Od U S (31Rd) |

U fa1 QI AT (I) T T (@)1

QTR TTHATTA: HeheTH: UTUgeh: AGTEd: Gi-Heh: chaHdh: HEILTiel: queh: JSUTUSh: JUaiich:
HigwHEdeh: §Heh: hroxidh: BIAH: TIYYsueh: o JeT ScaTe: S6d: Sgagieil: Hix|

Feerfaeaesdia: O gHEar: 371 T Wi (@)

QUTeTar: WYRT: RETHT: Fe: SgTedasid: Tl d: TAT: T I51: JgUMT: HUT-eAhE:
Sftar: Toren: qer e = (&) |

STYTSSITT: QT HOTAT: THUTIohT: YEHAYRIST: &7T: STSHGRYUT: T (Ffe) |

hERT: (QITET:) ATATUTEAT: TRd: HHS[Shell: HUTAT: AeUIULRI: HeAT: Teldel: 9 U (Fia) |

TS (ATeTF:) T1ed: TUTHHET: diddfear: fohfoag fawhn: swumar: fautes sget: 7

3.2.4 Ontology

Through meticulous examination of various chapters from the Bhavaprakasanighantu,

including Dhanyavarga, Sakavarga, and Mamsavarga, we have meticulously constructed

an ontology. This ontology serves as a comprehensive framework that adheres to

the fundamental principles of Ayurveda. By incorporating semantic intricacies, our

ontology will facilitate the precise annotation of the entire Bhavaprakasanighantu.

Ontology is structured in a hierarchical manner. The top-level categories for

node types cover broad concepts like properties of substances, substances, diseases,

treatments, preparations, location, time and so on. The granularity of subcategories

varies in each top-level category. Figure 3.9 illustrates the richness of the hierar-

chy for a single top-level category, namely, ‘Property’ of a medicinal substance. The

83

node label hierarchy sanskrit description
PROPERTY T Property

EXTERNAL PROPERTY ATERVT: External Property
VARNA_PROPERTY qui-ToT: Colour
GANDHA_PROPERTY T[T Smell
SHABDA_PROPERTY T=5-T[0T: Sound
SPARSHA_PROPERTY ayef-ToT: Touch
AARDRA_SHUSHKA_PROPERTY TG-S T]IT: Wet-Dry Property
SIZE_PROPERTY HATHRAM-TL: Size (Large, Small etc)
SHAPE_PROPERTY HATRHR-TOT: Shape
RUUPA_PROPERTY FY-T0T: Ruupa Property

INTERNAL_PROPERTY Eimiieziug Internal Property
RASA_PROPERTY TH-TOT: Taste
ANURASA_PROPERTY FTH-TOT: Anurasa (Seconda ry Taste)
VIIRYA_PROPERTY Frf-ToT: Viirya (Potency)
VIPAAKA_PROPERTY FaTeR-TOT: Vipaaka
DHARMA_PROPERTY R Acidic - Alkaline Property
LAGHU_GURU_GUNA TY-Te-T0T: Heavy - Light Guna
MANDA_TIIKSHNA_GUNA HE AT Dull - Sharp Guna
SHIITA_USHNA_GUNA -3 Cold - Hot Guna
SNIGDHA RUUKSHA GUNA FEmg-Eag-ToT: Unctuous - Non-unctous Guna
SHLAKSHNA_KHARA GUNA SETT-T-T[0T: Smooth - Rough Guna
SAANDRA_DRAVA_GUNA Hr5-5F-10T: Solid - Fluid Guna
MRUDU_KATHINA_GUNA - Soft - Hard Guna
STHIRA_CHALA_GUNA FER-gw-on: Immobile - Mobile Guna
SUUKSHMA_STHUULA_GUNA GETTFT: Fine - Bulky Guna
VISHADA_PICCHILA_GUNA faerg-fufeger-or: Clear - Slimey Guna

EFFECT_PROPERTY THTE-T[OT: Effect Property
BAAHYA PRABHAAVA PROPERTY ATE-AHE-T0T: External Effect
AABHYANTARA PRABHAAVA PROPERTY HTEHE-TYTE-T0T: Internal Effect

Figure 3.9: Example of hierarchical node ontology for a single top-level category ‘Property’
(Gunah).

ontology exemplifies the meticulous thought and deliberation invested in its cate-
gorization and structure. We have made every effort to remain true to the authen-
tic terminology and concepts derived from Ayurveda. One notable example is the
creation of ten distinct categories to represent ten pairs of properties, commonly re-
ferred to as ”Gurvadi” properties (literally, ‘Guru and so on’), ensuring their accurate

representation within the ontology.

The decision to add a certain entity type or relation type is made based on the
importance of the concept, frequency of its occurrence, and nature of frequently

asked questions.

For example, the concept of vata, pitta and kapha, collectively referred to as tri-
dosa or fundamental elements (humors) of the body, is central to Ayurveda. Con-
sequently, queries such as “What effect does a substance X have on a (one of the)

tridosa?” is one of the most fundamental and common information requirement

84

about the substance. Therefore, we have a special category Saririka-Dosa to repre-
sent the three entities vata, pitta and kapha. Any occurrence of these words or their
synonyms, e.g., slesman, a synonym of a kapha, results in the creation of an entity of
type Saririka-Dosa.

Similarly, there are three entities corresponding to the mental or psychological
attributes, namely, satva, rajas and tamas. We have a category Manasika-Dosa to rep-
resent these three entities. Both of these categories are nested under the broader
category Dosa, which in turn is nested under the category ‘Part of Body’.

The type of effect any substance has on each of the saririka-dosa is broadly an
increment or a decrement. However, it is important to note that within these cate-
gories, there exist nuances associated with the nature of increment or decrement. In
particular, Prakopa of a particular dosa means an increment that is harmful. There-
fore, to capture these nuances, we have identified four relations is Increased by, is
Decreased by, is Vitiated by and is Passivised by. Additionally, there are subtle differ-
ences between decrement and non-increment, so we also have negation of each of
these categories.

Overall, the ontology encompasses 300 entity types and 320 relationship types.

Once the ontology has been finalized, the next step is annotation.

3.2.5 Annotation Process

Annotation has been done with the purpose of building a knowledge graph (KG).
The annotators encompass individuals with a basic understanding of Sanskrit and
Ayurveda. We fix the unit for annotation to be a line from a verse (sloka). We collect
annotations of two types — entity and relation — described in detail in Section 3.2.5.1
and Section 3.2.5.2 respectively.

The corpus interface from Sangrahaka is capable of displaying extra information
about each line. We use this feature to display word segmentation and morpholog-
ical analysis of the text produced by SSCS and SHP, which can potentially help the

annotators. Figure 3.10 shows a sample text from Dhanyavarga with linguistic infor-

85

Bhavaprakasha Nighantu - sr=gaf:

Q
°]
iii

LINE TEXT SPLIT

-

® 256381 YR AYR: UTh SUTEl sftaet o qYR: AYR: U TS offaa: g v
WORD gz AYR: oTh TgUE sffere: Y
ROOT 7gz ey T REDIREY sfraer &g
GENDER m. m. m m. m. m.

CASE 1 1 7 1 1 1

NUMBER sg. sg. sg. sg. sg. sg.
Figure 3.10: Sample text from Dhanyavarga with linguistic information

mation.
An annotator goes through the lines assigned to her and for each line, identifies

the entities as well as the relationships between the entities appearing in it.

3.2.5.1 Entity Annotation

Entities correspond to nodes in the knowledge graph. When a word that represents
an entity is encountered, its lemma (pratipadika) and the entity type it belongs to are
identified, and the entity is marked.

As an example, consider the following line from sloka-31 of Dhanyavarga:

Devanagari: TMgA: FA-IsTU @fesifay: & = Sifda: |
IAST: godhtimah sumano'pi syattrividhah sa ca kirttitah.
Meaning: Godhama (wheat) is also called Sumana, and it is said to be of

three kinds.

Here, there are two entities, godhima and sumana, both of type “Substance”. An
entity needs to be added explicitly only the first time it is encountered.

In a case where a samasa is used to indicate an effect on an entity, and the rela-
tion fits one of the relationship types, a relevant word (pada) from the segmentation

(vigraha) of samasa is used. For example, consider the following line from §loka-33:

86

Devanagari: Te: TeR: &ftdl arafiret 7%: |
IAST: godhiimah madhurah $ito vatapittaharo guruh.
Meaning: Godhtma is sweet, cold, hard to digest and removes (decreases)

vata and pitta.

Here, vatapittaharah is a single word, which uses samasa, to indicate that vata and
pitta are reduced by godhtima. Therefore, vatapittahara will not be added as an entity;

instead the entities vata and pitta are recognized.

3.2.5.2 Relation Annotation

Relations correspond to edges in the knowledge graph. A relation, which fits one of
the relationship types from the ontology, is identified by interpreting the sloka. Sub-
ject and Object for this relation are then identified. Relations, where extra semantic
information is known, such as madhura is known to be a rasa, are endowed with that
extra information.
Consider the two examples of lines mentioned in the previous section (Section 3.2.5.1),
sloka-31 and $loka-33. Following relations are added based on these two lines:
sumana - is Synonym of — godhtma
madhura |- is (rasa) Property of — godhiima
éita I- is Property of — godhtima
vata - is Decreased by — godhtuma
pitta I~ is Decreased by — godhtima
guru - is Property of — godhtima
It should be noted that neither the subject nor the object may be present as words
in the line that mentions a relationship about it. Consider, for example, the nextline

of the sloka-33:

Devanagari: HHYHUQl ed: R7Y: FUHHER: |
IAST: kaphasukraprado balyah snigdhah sandhanakrtsarah.
Meaning: (Godhtima) increases kapha, Sukra, bala, is snigdha, sandhanakrt

(helps in joining broken bones) and laxative.

87

Here, the description of properties of godhtima (from previous line) is continued.
Therefore, one of the relations added is
kapha - is Increased by — godhtima

This relation has godhama as Object, although it is not present in the line itself.

3.2.5.3 Unnamed Entities

On occasions, it may happen that an entity is referenced by its properties only, and

it is not named at all in the text. Consider the following line from $loka-39:

Devanagari: g Sgfdy: LA gRd: Yiaeeae
IAST: mudgo bahuvidhah §yamo haritah pitakastatha.

Meaning: Mudga is of various types — black, green, and yellow.

Thus, there are three colored variants of the substance mudga, but they are not
named. In such a case, we create three unnamed entities (denoted by X-prefixed
nodes) with entity type “Substance”, same as that of mudga to refer to the three va-
rieties. Each of these entities is given a unique identifier. The unique identifier is a
combination of the unnamed entity number and the line number it occurs in. Thus,
if the line number is 256358, the black variant is given the identifier X1-256358.
Similarly, the green variant is identified as X2-256358 while the yellow variant is
identified as X3-256358.

To describe these variants, three relations are added as well:

Syama I is (varna) Property of — X1-256358
harita - is (varna) Property of — X2-256358
pita |- is (varna) Property of — X3-256358

The utility of such annotations becomes clear when these unnamed entities are
later referred to in another line or another verse.

The next line of $§loka-39 reads

Devanagari: 9dl T d¥=] Jd: Yai o7g: Ta: 11381

IAST: $veto raktasca tesantu ptrvah ptrvo laghuh smrtah. 113911

88

Meaning: ... white and red. Among them, each is successively easier to

digest.

The word tesam here refers to the five varieties of mudga, and gives a relation
between them. So, we get two new unnamed entities in this line, X1-256359 and
X2-256359 (note how X1 and X2 are re-used but with different line numbers).

We also get a total of four new relations to capture the successive ease in diges-
tion properties:

X1-256358 - is Better (in property laghu) than — X2-256358
X2-256358 - is Better (in property laghu) than — X3-256358
X3-256358 - is Better (in property laghu) than — X1-256359
X1-256359 - is Better (in property laghu) than — X2-256359
For the purpose of querying, the anonymous nodes are treated like any other

node.

3.2.5.4 Auto-complete Suggestions

We have enhanced the annotation interface from Sangrahaka to improve user expe-
rience with Sanskrit text by adding transliteration-based suggestions. There are nu-
merous standard schemes for Devanagari transliteration®. Whenever a Devanagari
entity is annotated, we use indic-transliteration package [Sanskrit programmers, 2021]
to transliterate it into various available schemes. We maintain an index with all the
transliterations. Now, when a user enters any text, we query our index and return
all suggestions that match with the lower-cased version of the user text. For ex-
ample, consider a word in Devanagari HTY’, which transliterates into ‘mASa’ (HK),
‘mASha’ (ITRANS), ‘masa’ (IAST), ‘maa.sa’ (Velthuis), ‘mARa’ (WX) and ‘mAza’ (SLP1).
Now, a user may enter at least 3 starting characters from any of the scheme, e.g.,
‘mas’, ‘maa’, ‘maz’, ‘mar’ etc. and the Devanagari word HY will be suggested. The
index is maintained globally. So, once an entity is entered by any annotator, the

completions for that entity become available to all annotators.

Shttps://en.wikipedia.org/wiki/Devanagari_transliteration

https://en.wikipedia.org/wiki/Devanagari_transliteration

89

Prepare
Line
256381
Relation Source
AR
Prepare
Relation
Line
256381
Detail
' pro|
Entity
mas|
is Property of
HY is Produced by
HW is Product of

Figure 3.11: Modified annotation interface with multi-transliteration-based suggestions

These suggestions are enabled to all text input fields, namely, entity annotation,
relationship annotations and querying interface.
Figure 3.11 shows the modified annotation interface with auto-complete sugges-

tions.

3.2.5.5 Curation

After the annotation step, before construction of the knowledge graph, a thorough
curation step is required to resolve errors or inconsistencies that may inadvertently

creep up during the annotation process.

3.2.5.5.1 EquivalentEntities The linguisticinformation that we have added with
the corpus is supposed to serve as a guideline for the annotation. However, since this
information is generated using automated tools, there might be errors. For exam-
ple, the word grahi (ITeh) refers to substances that have a property of absorbing liquid
and increasing digestive power. The reported pratipadika of this word, automatically

generated as the first result by SHP, is graha (UTg) instead of grahin. An annotator,

90

by oversight, may mark the incorrect lemma. Additionally, for substance names in
feminine gender, which also have this property, an adjective grahini (UTfg0fl) is used.
The correct pratipadika in this case would be grahini. The node refers to the same
property. So, semantically they are equivalent to each other, and ideally should be
captured using a single name. These instances are common for properties of sub-
stances.

To address this issue, we add a relation is Synonym of between these entities.
This, in conjunction with the optimization mechanism described in Section 3.2.5.6,

tackles the issue of equivalent entities.

3.2.5.5.2 Inconsistent Node Categories There may be differences of opinions
between annotators regarding which category a particular node should belong to.
For example, an entity jvara (S3%) refers to fever. This entity was marked as a Symp-
tom by some annotators and as a Disease by the others. Such cases were resolved

through discussion among the curators.

3.2.5.5.3 Missing Node Categories The framework allows entities to be men-
tioned in the relationships without being added as entities. While care was taken
to always add entities before marking relationships involving those entities, there
may still be instances of human error, where an annotator may forget to mark an
entity. We created a set of inference rules to infer as many instances of such occur-
rences as possible. For example, if an entity is marked as a source of the relation
is Property of, without having been added as an entity, we can automatically create

that entity by assigning the category ‘Property’ to it.

3.2.5.6 Symmetric Relationships

The relation is Synonym of is symmetric, i.e., if A is a synonym of B, then, by definition,
B is also a synonym of A. A query can be made using any of the synonyms, and the
system should still be able to return the correct answer.

Suppose, 51, 5; ..., Sy are N synonyms of a substance. If the synonym group is

91

completely captured, then a user should be able to query using any synonym and still
get the desired result. Properties of the substance corresponding to this synonym
group can also be scattered across S;’s. Say, there are M properties Py, P, ..., Py,
and some of the relations are P, is Property of S, P, is Property of Sy, Ps is Property of
Ss, and so on. Now, if we want to query whether substance S, has property P, but we
search using the name of the substance as .S,, a direct query will not work, as there
is no direct relation between the nodes S, and P;. For the correct answer, we would
have to find every synonym of S; and check if any of them has the property P;. This
requires a path query. A path query involving N synonyms may require as many as
N — 1 edge traversals. Path queries are NP-hard [Mendelzon and Wood, 1995] and

are, therefore, computationally expensive.

For example, rajika, ksava, ksutabhijanaka, krsnika, krsnasarsapa, raji, ksujjanika,
asuri, tiksnagandha, cinaka are all names of the same substance. A relation is added

as follows,
usna - is Property of — rajika

Now, suppose that we want to query for a property of the substance ksava, which
while referring to the same entity as rajika, does not have a property edge incident
upon it.

We, therefore, are forced to use a path query, and the query has to explore all
the synonym paths from ksava to find out if ksava itself or one of its synonyms has
any property edge. The number of such paths can be impractically large, especially

for large knowledge graphs.

We perform a simple optimization heuristic to tackle this issue. We first identify
asynonym Sy among all the synonyms having the highest degree,i.e, K € {1,.., N},
such that X' = argmax degree(S;). We treat this as the canonical name for that
synonym group, anc; we add a relation is Synonym of from every S;,i # K to Sk.
Further, we transfer all the edges (other than the is Synonym of edge) from every

Si,1 # K to Sk. In other words, if S; was connected to a node V by a relation R, after

optimization, Sk will be connected to node V by relation k. Now, every synonym

92

has a direct edge to the canonical name, with all the properties getting attached to
the canonical name only. Thus, a query on any synonym has to traverse at most 1
edge before reaching the desired node.

At the end of curation and optimization steps, there were 410 nodes and 764

relationships that constitute our knowledge graph.

3.2.6 Querying

Although the ideal way of question answering is by posing queries in natural lan-
guage, unfortunately, the state-of-the-art in Sanskrit NLP tools does not allow that.
Hence, to simulate natural language queries, we use query templates.

The annotation and querying platform that we use, Sangrahaka, uses Neo4j graph
database’ for the purpose of storing and querying the knowledge graph. Cypher? is
Neo4j’s graph query language inspired by SQL, but optimized for graph querying,
and it makes use of intuitive ASCII-art syntax for querying. The platform utilizes the
power of Cypher for connecting to the graph database. Natural language queries are

simulated using query templates.

3.2.6.1 Query Templates

A query template consists of a set of natural language templates and an equivalent
graph query template. Each of these templates contain placeholders. Values of these
placeholders can be filled by choosing the required entity, entity type or relation, to
convert the query template into a valid natural language query. The same replace-
ment in the graph query template yields a valid graph query which can be directly
used to fetch results from the graph database.

For example, consider a sample query template:

» Sanskrit: & Tarf: {0} 30 Qe qE |

* English: Which entities increase the dosha {0}?

"https://neo4j.com/
8https://neodj.com/developer/cypher/

https://neo4j.com/
https://neo4j.com/developer/cypher/

93

* Cypher:

MATCH (dosha:TRIDOSHA)-[relation:IS_INCREASED_BY]->(entity)
WHERE dosha.lemma = "{@}"

RETURN entity

The variable {@} here is a word representing an entity of type TRIDOSHA. The
valid values for the variable in this query are vata or pitta or kapha or one of their syn-
onyms. So, natural language questions such as “Which substances increase kapha?”,
etc. can be realized using this query template.

In order to increase the number of the questions that can be answered, we have
created a set of generic queries which help model any query up to a single relation.

It contains the following three query templates:

» Which entity is related to entity {@} by relation {1}?
* How is entity {@} related to entity {1}?

» Show all matches where an entity of type {@} has relation {1} with an entity

of type {2}.

We have a total of 31 natural language query templates in Sanskrit® to represent
the most relevant queries. We have classified these templates semantically into 12
categories. Classification helps to locate an intended query template faster. An ex-

haustive list of these query templates and their categories is in Table 3.9.

3.2.6.2 Query Answers

Result of graph queries are also graphs. The querying interface from Sangrahaka
consisted of a graphical and a tabular display. Figure 3.12 shows a sample output
using the query interface. In the graph, hovering over a node lets the user see the
properties associated with that node. Lemma (word-stem) associated with that node

is visible as the label of the node in the graph. In addition, provenance of the node

®We also have their English translated versions in the system.

94

QUERY

SANSKRIT -

. Is_svgnvm o >
, P
15 oecperen by
a1y i :
TN\ Ts_PROPERTY_0F —r5-TNCREASED_E

) I EREASED_BY.
1s_eRORGETY.oX, 15 propef. opfo
on*1..2]-(entity) WHERE entity.lemma "HI§" RETURN =z SUBMIT /
i
R PRI or F;stng;; hseo o ASED oy
= & I5_PRORERTY_g
o I g or 15 PROPERTY oF
) o) RGPERT
90 il o
15 w«wgm 2
ENTITY RELATION X /\ e
[// N Y \ / ‘
- B Is_TREASED_BY
ety 6 e .
Ay NCREASED BY
e

IS_PROPERTY_OF (dra:) @rg (PROPERTY) 15 HROPMIATHD
(SUBSTANCE)

\x/ \

\ 15_PRY S _PROPERTY OF, TS INCREASED_BY

IS_PROPERTY_OF /W ¥ OG- EROPERTY T \ s
T

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Figure 3.12: Sample output using query interface featuring Sanskrit query templates

such as which line from the corpus does that node correspond to, and the identifier
of the annotator(s) who added that entity are also mentioned. The nodes are color-

coded in such a way that nodes referring to entities of same type get the same color*®.

3.3 Summary

Current state of Sanskrit NLP makes manual annotation a necessity for semantic
tasks. In this chapter, we proposed the construction of a knowledge graph (KG)
through manual annotation process with a special focus on capturing semantic in-
formation. We described a web-based tool Sangrahaka for annotation and querying
of knowledge graphs. As a proof-of-concept, we selected three chapters from the
nighantu text Bhavaprakasanighantu, carefully created an ontology, and performed
semantic annotation to construct a knowledge graph. Our methodology is extensi-
ble to other nighantu texts.

The source code of Sangrahaka is freely available in the open-source domain
at https://github.com/hrishikeshrt/sangrahaka/, allowing users to access
and utilize it. The customized instance of the tool, deployed for the annotation and
querying of Bhavaprakasanighantu, can be accessed at https://sanskrit.iitk.

ac.in/ayurveda/.

19Colors are not fixed. Thus, the color yellow is not indicative of a specific entity type. It only ensures
that for a particular query answer, all yellow nodes will have the same entity type.

https://github.com/hrishikeshrt/sangrahaka/
https://sanskrit.iitk.ac.in/ayurveda/
https://sanskrit.iitk.ac.in/ayurveda/

Table 3.9: Natural Language Query Templates

95

Category Sanskrit Template English Template Input Type
gfd (Contents) YT & YehRT: | What are all the entity
types?
gfd (Contents) STy o FrHT: | What are all the relation-
ships?
gfd (Contents) % o g | What are all the sub-
stances?
g (Contents) % o T | What are all the entities?
guiq (Detail) {0} s fqwd a1 Show some details about Entity
{0}.
Ui (Detail) {0} 3 fawd sAf¥& Show some more details Entity
Nl about {0}.
UdR (Type) {0} ST YhlX: &:| What is the type of {@}? Entity
ThR (Type) Td {0} 30 USRE Find all the entities of Entity-Type
geret: fa| type {0}.
T[0T (Property) &9 g {0} 3fd Which substances havea Entity
TOT: AR | property {0}?
a4 (Substance) {0} ST TUM: &I What are the properties Entity
of {0}?
%4 (Substance) {0} 30 g UHRT: What are the types/vari- Entity
FI ants of the substance
{0}?
TS (Synonym) {0} 3T I What are the synonyms Entity

AT S|

of {0}?

Table 3.9: Natural Language Query Templates

96

Category Sanskrit Template English Template Input Type

Y (Relation) {0} sl T~ 9 dd Find all entities related Relation
) by the relation {0}.

s (Relation) {0} {1} Uqd: WA &: What is the relation be- Entity,
gy | tween {0} and {1}? Entity

33 (Tridosa) F U’ {0} 3fd 3w Which entities increase Entity
e Fafd| the dosha {0}?

3139 (Tridosa) FUqrt: {0} sf[d M= Which entities decrease Entity
BREEIR the dosha {0}?

19 (Tridosa) & Ugrah: {0} sfd 3= Which entities increase Entity,
g4+ {1} sfd v g™ the dosha {0} and de- Entity
T Fdl=d| crease the dosha {1}?

3139 (Tridosa) & uggh: {0} {1} Which entities increase Entity,
Tqd: awdnr 9d9 {2} the doshas {0} and {1} Entity,
fd e g aFdi~dl and decrease the dosha Entity

{2}?

189 (Tridosa) Fuerel: {0} 3[d M Which entities increase Entity,
gdd {1} {2} UdA: the dosha {0} and de- Entity,
AV gE T ﬁi}dl crease the doshas {1} Entity

and {2}?

T (Disease) & uqigh: {0} 3fd W Which entity causes the Entity
Fafd| disease {0}?

T (Disease) & Tarel: {0} =fd Wi Which entity cures the Entity
= disease {0}?

Table 3.9: Natural Language Query Templates

97

Category Sanskrit Template English Template Input Type

UYg (Effect) & Uqgh: {0} TJd Which entities affect Entity
fagdfea {0}?

UYg (Effect) & UqEl: {0} TAT® Which entities benefit Entity
ATHYCT: | {0}?

U4 (Effect) & Yol {0} Q?-Rfl Which entities harm Entity
g | {0}?

U4 (Effect) & Uqgh: {0} 3T Which entities increase Entity
Fe Pl | {0}?

UYg (Effect) & Uqgh: {0} T Which entities decrease Entity
RREEIE {0}?

rfdreRur (Space-Time) {0} sfd uerel: @& When does {0} grow? Entity
Sad |

srfdrenor (Space-Time) {0} sfd ek %3 Whereis {0} found? Entity
[ghacll

ATYRUT (Generic) Fuarh: {0} sfdUe¥ Which entity is related to Entity,
TE {1} sfd ¥=== {0} by relation {1}? Relation
TEfeT: |

YT (Generic) {0} 3fd uerel: {1} How is {0} related to Entity,
3fd U wg &Y {1)7? Relation
TEfa: |

TR (Generic) {0} 3fd yerRE Uare:: Show all matches where Entity-Type,
TE {1} 3fd T=-E9 an entity of type {0} has Relation,
gl {2} 3fd UsR™ relation {1} with an en- Entity-Type

Terf g2

tity of type {2}.

Chapter 4

Antarlekhaka: Comprehensive

Natural Language Annotation Tool

Sangrahaka excels in the annotation for the construction of knowledge graphs. How-
ever, there is often a need for general-purpose annotation for various linguistic
tasks. Additionally, to support the progress of natural language processing (NLP)
and facilitate research, datasets for various NLP tasks are required.

We now introduce Antarlekhaka?, a tool for distributed annotation that offers
user-friendly interfaces to facilitate the annotation process of various common NLP
tasks in a straightforward and efficient way. We propose a sequential annotation
model, where an annotator carries out multiple annotation tasks relevant for a small
text unit, such as a verse, before proceeding to the next. The tool has full Unicode
support and is designed to be language-agnostic, meaning it can be used with cor-
pora from many different languages, making it highly versatile.

The tool sports eight task-specific user-friendly annotation interfaces correspond-
ing to eight general categories of NLP tasks: sentence boundary detection, canonical
word ordering, free-form text annotation of tokens, token classification, token graph
construction, sentence classification and sentence graph construction.

The goal of the tool is to streamline the annotation process, making it easier and

more efficient for annotators to complete multiple NLP tasks on the same corpus.

1Antarlekhaka is a Sanskrit word meaning ‘annotator’.

100

Table 4.1: Comparison of Antarlekhaka with various annotation tools based on primary
features and supported tasks

Feature WebAnno GATE BRAT FLAT doccano Sangrahaka Antarlekhaka
Distributed Annotation v v v v v v v

Easy Installation v v v v v
Sequential Annotation v
Querying Interface v

Token Text Annotation
Token Classification
Token Graph

Token Connection
Sentence Boundary
Word Order

Sentence Classification
Sentence Graph

SNENENEN
SNENENEN
SNENENEN
SNENENEN

AN NN NN

4.1 Antarlekhaka Software

There are several text annotation tools available that target specific annotation tasks.
However, each of these tools falls short in fulfilling all the requirements of an ideal
annotation tool. For example, WebAnno [Yimam et al., 2013] is rich in features but
becomes complex to use and experiences performance issues as the number of lines
displayed on the screen increases. GATE Teamware [Bontcheva et al., 2013] is dif-
ficult to install. FLAT [van Gompel, 2014] lacks an intuitive interface and uses a
non-standard data format. BRAT [Stenetorp et al., 2012] has not been actively? de-
veloped. doccano [Nakayama et al., 2018], although simple to set up and intuitive,
only supports labeling tasks. None of these tools address the important tasks of sen-
tence boundary detection or canonical word ordering. Thus, there is a need for an
annotation tool that is user-friendly, easy to install and deploy, and covers all the
necessary tasks for NLP annotation.

Sangrahaka [Terdalkar and Bhattacharya, 2021a], while being easy to setup and
use, focuses only on the annotation towards creation of knowledge graphs. It also
sports a querying interface for template-based natural language queries. But it lacks

support towards general-purpose NLP annotation tasks.

2The latest version was published in 2012

101

Administrator

Annotator

Visualize

Figure 4.1: Workflow of Administrator and Annotator roles and their interaction with each
other. Corpus upload, task setup, annotation and visualization are the principal compo-
nents.

Thus, for the general purpose multi-task annotation of NLP tasks, we present
Antarlekhaka. The annotation is performed in a sequential manner on small units
of text (e.g., verses in poetry). The application is language and corpus agnostic. The
tool is able to process data in two different formats: the standard CoNLL-U® format
and plain text format. Regular-expressions based tokenizer is applied when using
the data in plain text format.

Table 4.1 shows a comparison of the prominent annotation tools. We also con-
duct an objective evaluation of Antarlekhaka using the scoring methodology pro-
posed by [Neves and Seva, 2021]. We modify the criteria suitable to the domain of
NLP annotation. Details of the evaluation are described in Section 4.1.2. It is impor-
tant to note that while some of the existing tools, in theory, have the capability to

support certain NLP tasks, they may not be designed with user-friendly interfaces.

4.1.1 Architecture

Antarlekhaka is a language-agnostic, multi-task, distributed annotation tool that is
presented as a Web-deployable software. The tool leverages various technologies
for its implementation, such as Python 3.8 [Van Rossum and Drake, 2009], Flask 2.0.1

[Ronacher, 2011, Grinberg, 2018], and SQLite 3.38.3 [Hipp, 2022] for the backend,

%https://universaldependencies.org/format.html

https://universaldependencies.org/format.html

102

and HTMLS5, JavaScript, and Bootstrap 4.6 [boo, 2021] for the frontend.

Flask web framework powers the backend of Antarlekhaka providing a robust
and scalable infrastructure. A web framework is responsible for a range of backend
tasks, including routing, templating, managing user sessions, connecting to databases
and others. The recommended way to run the tool in a production environment is
using a Web Server Gateway Interface (WSGI) HTTP server, such as Gunicorn [gun, 2021],
which can operate behind a reverse proxy server such as NGINX [ngi, 2021] or Apache
HTTP Server [apa, 2023]. However, any WSGI server, including the built-in server of
Flask, can be utilized to run the application.

SQLite is used as the database management system to store and manage the data
and metadata associated with the annotation tasks. An Object Relational Mapper
(ORM) SQLAlchemy [sql, 2021] is used to interact with the relational database. This
allows the user to choose any supported dialect of traditional SQL, such as SQLite,
MySQL [mys, 2023], PostgreSQL [pos, 2023], Oracle [ora, 2023], MS-SQL [mss, 2023],
Firebird [fir, 2023], Sybase [syb, 2023] and others*.

The frontend of the tool, built using HTMLS5, JavaScript, and Bootstrap, provides
user-friendly interfaces for annotators and administrators. The tool provides a feature-
rich administrative interface to manage user access, corpus, tasks and ontology. The
tool also includes eight types of intuitive annotation interfaces. These are further ex-
plained in detail in Section 4.1.1.3.

By combining these technologies, Antarlekhaka offers a powerful and flexible

solution for large-scale annotation projects.

4.1.1.1 Workflow

The workflow of the system is demonstrated in Figure 4.1.
The application is presented as a full-stack web-based software. It follows a
single-file configuration system. An administrator may configure the tool and deploy

it to web, making it immediately available for use. User registration is supported.

*https://docs.sqlalchemy.org/en/20/dialects/

https://docs.sqlalchemy.org/en/20/dialects/

103

User access is controlled by a 4-tier permission system, namely User, Annotator, Cu-

rator and Admin.

The tool has eight annotation interface templates corresponding to eight generic
categories of NLP annotation tasks: sentence boundary detection, canonical word
order, free-form token annotation, token classification, token graph construction,
token connection, sentence classification, and sentence graph construction. Vari-
ous NLP tasks can be modelled using each of these categories. More than one tasks
of same category may be required for a specific annotation project. For example,
named entity recognition (NER) and parts-of-speech (POS) tagging are both exam-
ples of token classification. To facilitate this, the administrative interface allows an
administrator to create multiple tasks of each category. Additionally, an adminis-
trator can also control the set of active tasks, order of the tasks, ontology for the
relevant tasks, corpus management and user access management.

We propose a streamlined sequential mode of annotation where an annotator
completes multiple annotation tasks for a single unit of text before moving on to the
next unit. While sequential annotation is suggested, it is not strictly enforced, al-
lowing an annotator to perform only a subset of tasks, as well as go back and make
changes. The set and order of tasks is customizable through an administrative in-
terface. We consider a small logical block of text as a unit for the annotation, e.g., a

verse from the poetry corpus.

4.1.1.2 Data

The data for corpus can be in either of two formats: CoNLL-U format or plain text
format and can contain Unicode text. CoONLL-U is a widely used format for linguistic
annotation, and it is based on the column format for treebank data. The format is
designed to store a variety of linguistic annotations, including part-of-speech tags,
lemmas, morphological features, and dependencies between words in a sentence.
Figure 4.2 shows a sample of CoNLL-U data taken from Digital Corpus of Sanskrit

[Hellwig, 2021].

104

5 # text = tapahsvadhyayaniratam tapasvi vagvidam varam

6 # sent_id = 110529

7 # sent_counter = 1

8 # sent_subcounter = 1

9 1-3 tapahsvadhyayaniratam _ _ _ _ _ _ —

10 1 tapas tapas NOUN _ Case=Cpd _ _ _ LemmaId=96401|0ccId=31
11 2 svadhyaya svadhyaya NOUN _ Case=Cpd _ _ _ Lemmal
12 3 niratam niram VERB _ Case=Acc|Gender=Masc|Number=Sing|VerbForm=Part _ _

13 4 tapasvi tapasvin NOUN _ Case=Nom|Gender=Masc |Number=Sing _ _

14 5-6 vagvidam _ _ _ — _ — — —

15 5 vac vac NOUN _ Case=Cpd _ _ _ LemmaId=76023|0ccId=31
16 6 vidam vid ADJ _ Case=Gen|Gender=Masc |Number=Plur _ _ _

17 7 varam vara ADJ _ Case=Acc|Gender=Masc |Number=Sing _ _ _

18

Figure 4.2: Example of CONLL-U Data from Digital Corpus of Sanskrit. The columns display-
ing word index, word form, lemma, universal parts-of-speech tag, language-specific parts-
of-speech tag, and morphological features are visible.

Data in CoNLL-U format can be obtained directly from treebanks such as Univer-
sal Dependencies [De Marneffe et al., 2021], which is a project that aims to develop
cross-linguistically consistent treebank annotation. In addition, NLP tools such as
Stanza [Qi et al., 2020] are capable of processing a general corpus of text and pro-

ducing data in CoNLL-U format, making it easier to obtain data in this format.

On the other hand, plain text data is processed using a regular-expression based
tokenizer, which is a process that splits the text into individual units of meaning,
such as verses, lines and tokens using patterns defined in the form of regular expres-
sions to identify the respective separators. This process allows the system to convert
plain text data into a more structured format. The default tokenizer uses ‘\n\n’ (two
newlines, i.e., one blankline) as verse delimiter, ‘\n’ (single newline) as line delimiter
and \s’ (whitespace) as token delimiter. The plain text processor module is a plug-
gable component. An administrator may reimplement it using any language specific
features or tools as long as the data output by the module meets the current format
specifications.

After the data has been imported, it is organized in a five-level hierarchy struc-
ture consisting of: Corpus, Chapter, Verse, Line, and Token. The structure is designed
to provide a clear and systematic way to categorize and access the data, making it

easier to locate and analyse specific pieces of information.

The first level of the structure, Corpus, refers to the entire collection of text data.

105

Manage Tasks

D Title Edit Active

Sentence Boundary “
2 Anvaya £
3 Lemmatization “ No S
4 Named Entity Recognition 1 t
5 Action Graph “ No :
6 Co-reference Resolution “ !
7 Sentence Classification @ No :
8 Discourse Graph & No t

Figure 4.3: Task management interface, a part of administrative interface. Tasks can be
added, edited, activated, deactivated and reordered here.

The second level, Chapter, refers to a specific division of the text, such as a book
or section of a book. The third level, Verse, is the default unit of annotation, and
it refers to a specific verse or passage within the chapter. The fourth level, Line,
refers to the specific line of text within the verse, and the fifth and final level, Token,
refers to the individual units of meaning within the line, such as words, numbers,

or punctuation marks.

The hierarchical structure of the data provides a clear and organized framework
for annotating and analyzing the data, making it easier to capture the relationships

between different elements of the data.

106

Sentence Boundary H ?

2488 dur g oot af wreear ITHETEaRE
3aTd AHUN EHY, dd, BITAGRi ad: ##

2489 T A4 HATH, Udg, A ## Tg_ 9dl I
el TN TTwede] ## ST arqgai d:

2490 TR 9 gge1 9 vl 9 gyfva:

qu: A g9 9 AN A GEY: ##

Figure 4.4: Sentence Boundary Annotation Interface

4.1.1.3 Interfaces

The annotation tool provides eight intuitive annotation interfaces to support various
NLP annotation tasks. These interfaces are, Sentence Boundary Detection, Canoni-
cal Word Order, Token Annotation, Token Classification, Token Graph, Token Con-
nection, Sentence Classification, and Sentence Graph. There may be multiple tasks
of each category. The information such as task title, task-specific instructions to an-
notators, set of active tasks and the task order can be configured by an administrator
from the administrative interface as illustrated in Figure 4.3.

The tool proposes a sequential model of annotation. An annotator is shown the
corpus in the form of small text units (e.g., verses) on the left side, and an annotation
area on the right side of the screen. Upon submitting the annotations for a particular
task, the interface automatically takes the annotator to the next task. An annotator
is expected to complete all the tasks associated with a text unit before moving on to
the next unit. This, however, is not strictly enforced, allowing annotator to still go

back to make changes to the annotation.

We now describe each task category and the corresponding frontend interface.

107

Anvaya H ?

Figure 4.5: Word Order Annotation Interface

4.1.1.3.1 Sentence Boundary Detection The annotator is presented with a unit
of text in an editable text area prefilled with the original text. The user is tasked
with identifying the sentence boundaries and placing the delimiter “## (two ‘hash’
symbols) at the end of every sentence, effectively marking the sentence boundaries.
If the sentence does not end in the displayed unit, the user does not add any delim-
iters. Once the sentence boundaries have been marked, the user can move on to the
next annotation task. An illustration of this annotation task is shown in Figure 4.4.

The importance of the sentence boundary task is not limited to languages without
distinct sentence markers; it also pertains to poetry text, making it relevant to all
languages.

It’s worth mentioning that although the sentence boundary task is given primary
citizen treatment, it can still be turned off for languages where it’s not applicable. In
such instances, the boundaries of annotation text units (e.g., verses) are treated as

sentence boundaries.

4.1.1.3.2 Canonical Word Order All sentences that end in the current unit of
text are displayed to the annotator as a list of sortable tokens. The annotator has the

ability to rearrange these tokens into the correct canonical word order by dragging

108

Lemmatization

2489 Submit

4]
I O
BEEEBER - -

Figure 4.6: Token Annotation Interface: Lemmatization

them into place. Additionally, if any tokens are missing, the annotator can add them
as well. A visual representation of this task can be seen in Figure 4.5. The sorting

capability is made possible through the use of the jQuery UI (Sortable plugin)>.

4.1.1.3.3 Token Annotation The token annotation interface allows an annotator
to add free-form text associated with every token. This free-form text can have dif-
ferent purposes, such as to identify the root word of a word (lemmatization), to sepa-
rate multi-word expressions into individual words (compound splitting), to analyse
the morphological structure of a word (morphological analysis), etc. The token an-

notation interface is shown in Figure 4.6.

4.1.1.3.4 Token Classification Token classification is a process of assigning pre-
defined categories to individual tokens in text data. It is a special case of free-form

token annotation, wherein the annotations are guided by an ontology. For such an

Shttps://api.jqueryui.com/sortable/

https://api.jqueryui.com/sortable/

109

Named Entity Recognition E 2
REEH Hu X
HUMAN Human

HUT Hut
MARUBHUMI marubhumi
MUHURTA Muhurta

3
B-N-N-

2489 Submit
Figure 4.7: Token Classification Interface: Named Entity Recognition

annotation task, an administrator must create an ontology at the time of setting up
the task. During the annotation process, an annotator is provided with a list of to-
kens, each accompanied by a dropdown menu, from which they can select the appro-
priate category for relevant tokens. Some common examples of token classification
tasks include named entity recognition, dependency tagging, part-of-speech tagging,

and compound classification. Figure 4.7 illustrates the token classification interface.

4.1.1.3.5 Token Graph A token graph is a graph representation of the sentence,
where the nodes are tokens belonging to a single sentence and the relations are
based on an ontology. Tasks such as dependency parse tree, constituency graph,
action graph are examples of tasks belonging to this category.

Semantic triple® is a standard format to represent and store graph-structured in-
formation in a relational database in a systematic manner. The interface allows an
annotator to add multiple relations per sentence in the form of subject-predicate-
object triples, where subject and object are tokens from the sentence and the predi-
cate is a relation from the task specific ontology. The valid values of subject, object

and predicate appear in individual dropdown menu elements for the annotator to

Shttps://en.wikipedia.org/wiki/Semantic_triple

https://en.wikipedia.org/wiki/Semantic_triple

110

Action Graph E ?
g raq: I A ek 9= e, H
T < Enil < TG <

i
:
i
|l oonom

2489

I e TS et g T,

X

|

n Continue

Figure 4.8: Token Graph Interface for a sample task of Action Graph. The second interface
shows the visualization of the graph

choose from. Erroneous triples may also be removed. During the annotation pro-
cess, an annotator can view the current status of the token graph at any time by
clicking the ‘Show Graph’ button.

Figure 4.8 shows the token graph interface with graph visualization.

4.1.1.3.6 Token Connection Token connection is similar to token graph, how-
ever, there is a single type of relation to be captured. For example, when marking
co-references, only connecting the two tokens to each other is sufficient, while the
relationship ‘is-coreference-of”’ is implicit. The tool provides a special simplified in-

terface for this scenario. In addition to implicit relations, token connections can also

111

Co-reference Resolution ?

ua:ma’:mmnﬁ‘ﬁ

" e

S o HFH, -
S =
am o HFM, -

Figure 4.9: Token Connection Interface for a sample task of Co-reference Resolution

be established across sentences. The annotator is presented with a list of clickable
tokens from the current sentence as well as tokens from a context window of previ-
ous n = 5 sentences. The annotator can add a connection by clicking on the source
token and the target token one after the other and confirming the connection. If
a connection is added in error, it can be removed as well. The token connection

interface is shown in Figure 4.9.

Sentence Classification H ?
Gﬂﬁ QERL Wﬂﬁ:{ilﬂél Select Sentence ™
c1]
I T TSI e I T,

Figure 4.10: Sentence Classification Interface

112

Discourse Graph HE ?
am‘r g &9 wemor A ﬁaq?ﬁqa?mwr{ GGH

hIeTHGR] EEE 34ard

anﬁqaa\ F W=
B- -~ -~ ~

DR2 piscourse Rel
4 DR Discourse Rel ™
= DR1 Discourse Rel

2489 Submit

Figure 4.11: Sentence Graph Interface

4.1.1.3.7 Sentence Classification Sentence classificationis atask where sentences
are classified into different categories. This task is similar to ontology-driven token
classification, with the difference being that classes are associated with sentences
rather than tokens. The ontology is predefined by the administrator while setting
up the task. The annotator can select the category for a sentence from a dropdown
menu. Tasks such as sentiment classification and sarcasm detection are examples
of sentence classification tasks. Figure 4.10 illustrates the sentence classification in-

terface.

4.1.1.3.8 Sentence Graph Sentence graph is a graph representation of relation-
ships between sentences. The connections can be between tokens or complete sen-
tences, and the relationships are captured as subject-predicate-object triples. Tokens
from the previous n = 5 sentences are presented as buttons arranged in the anno-
tated word order. An annotator can create connections by clicking on the source and
target tokens and selecting the relationship from a dropdown menu based on an on-
tology. A special token is provided to denote the entire sentence as an object. Tasks

such as timeline annotation and discourse graphs are examples of tasks belonging

113

Home Corpus Export Settings Admin Logout (Admin)

B‘anq\a _ Hﬂ?"ﬂ% Lemma NER 05 Dependency Coreference

c B-
Verse Text = Dependency Parsing E 2
- TIREAS S Arissra, eronfias, farefay, saess - . - _
- AT T R TmarEe SR SIEE ST STEE A OF #[8d S | H
® 24 SRR FICT SATET AT 9F “[8d S| =
S = -
Word [GIEAES SF01 ke qw 9F ed e
Lemma
sl
24 Submit
UPOS _ _ _ _ _ _ _ Faw

e

Figure 4.12: Annotation Interface: Corpus area shows text split into small units, and anno-
tation area highlights various annotation task tabs

to this category. Figure 4.11 shows the interface for creating sentence graph connec-
tions. Similar to the token graph task, an annotator can visualize the sentence graph

as well.

4.1.1.4 Language Independence

Unicode is a widely used computer industry standard for encoding, representing,
and handling text in a uniform and consistent way across various computing plat-
forms and applications. The standard assigns unique numerical codes to each char-
acter in a large number of scripts, including those used for writing many of the
world’s languages. With full support for Unicode, it means that text data from any
language that is encoded using Unicode can be uploaded and processed by the sys-
tem. This allows users to work with text data in their preferred languages.

We have seen illustrations of individual interfaces in Section 4.1.1.3 for a Sanskrit
corpus. Figure 4.12 displays the overall annotation interface for a corpus of Bengali

language. This also highlights the language-agnostic nature of the tool.

4.1.1.5 Schema

Antarlekhaka utilizes a relational database to store information such as, corpus data,
user data, task data and annotations. A relational database allows for efficient stor-
age and retrieval of functional data, as well as the ability to establish relationships

between different pieces of data. For example, annotations of specific verses by spe-

114

token_graph
id INTEGER token_relation_label
task_id INTEGER “id INTEGER
|NTEGER task_id INTEGER &
sre_id INTEGER 7| label VARCHAR
label_id INTEGER description VARCHAR
dst_id INTEGER | is_deleted BOOLEAN
boundary | annotator_id NTEGER - N
NTEGER | is_deleted BOOLEAN i task
verse_id INTEGER 4 category VARCHAR
INTEGER ' title WARCHAR
annotator_id|INTEGER __»| short VARCHAR
updated at DATETIME / \ help VARCHAR
word_order . — I‘ order INTEGER
id INTEGER — User is_deleted BOOLEAN
task_id INTEGER o
[Boundary_Jd NTEGER | / NTEGER
token_id INTEGER | ol Heemame VARCHAR
order NTEGER . Td- . INTEGER emal VARCHAR
annotator_id INTEGER ~~_ | line_id INTEGER- | password VARCHAR
- i q — active BOOLEAN
UREEEGLER (BANSTIYE m:er*ld l\iﬁ;{é’—é’;’? > fs_uniquifier WARCHAR
:er x:r - — 7 confirmed_at DATETIME
lemma VARCHAR settings Jsen
analysis JSON
display JSON
annotator_id INTEGER

Figure 4.13: Entity Relationship Diagram showing selective tables: Task, User, Token, Sen-
tence Boundary Annotation, Word Order Annotation, Token Graph Annotation, Token Graph
Relation Ontology. Tables are color coded. Yellow: Annotation Tables, Orange: Ontology Ta-
bles, Blue: Corpus Tables, Pink: User Tables, Green: Task Information Table. The annotation
table for ‘Sentence Boundary’ task is highlighted, showing the references incoming (red) and
outgoing (green) references to other tables.

cific users can be linked allowing the system to quickly locate and display relevant

annotations when needed.

4.1.1.5.1 Tasks Theinformation regarding tasks is stored in a single table within
the relational database. This table serves as a centralized repository for informa-
tion related to each task, including its title, category, and instructions for annota-
tors. Each task is assigned a unique identifier known as a ‘task id’, which serves as

a means of easily referring or linking to a specific task.

4.1.1.5.2 Ontology Ontology encompasses a collection of tags or categories that
annotators can select and assign to tokens or sentences. It typically holds relevance
for any type of classification tasks. Ontology is required for four task categories:
token classification, token graph, sentence classification, and sentence graph. The

ontology information is stored as a flat list of labels in four separate tables, each

115

specific to a particular task category. There may be multiple tasks corresponding to
each of these categories. Therefore, every ontology table also has a ‘task id’ column
which associates the ontology entries with the corresponding tasks. This setup al-
lows for clear organization and linking of the ontology information with the relevant

tasks.

4.1.1.5.3 Annotations There are eight annotation tables, each corresponding to
a different category of annotation tasks. Annotations of all tasks belonging to each
category are stored in the corresponding table. The annotations are linked to the
semantic units of text, specifically, the sentences marked in the sentence boundary
task’. The other seven annotation tables include a reference to the ‘boundary id’. In
cases where the sentence boundary task is not necessary, the boundaries of the an-
notation text units (e.g., verse) are considered as sentence boundaries and annotated
automatically in the background using a special annotation user. Additionally, to fa-
cilitate multiple instances of tasks from each task category, every annotation table
contains a reference to the ‘task id’. Finally, each annotation table sports a tailored
schema to support the recording of task specific annotations. An ‘annotator id’ asso-
ciated with every task annotation table, allows for proper organization and tracking
of the annotations.

Figure 4.13 shows the Entity Relationship (ER) diagram on a subset of tables from

the relational database of Antarlekhaka.

4.1.1.6 Pluggable Heuristics

The tool supports the use of heuristics as ‘pre-annotations’ to assist annotators. Heuris-
tics are custom functions that generate suggestions for the annotators to use or ig-
nore. These heuristics are often specific to the language and corpus, and thus, must

be implemented by the administrator when setting up the tool. The tool outlines the

“If an annotator initially marks an incorrect sentence boundary but later recognizes the mistake
and corrects it, the earlier annotations associated with that particular ’(boundary id’ are subsequently
removed from all related tasks. Annotations related to sentences that are not connected to that spe-
cific boundary remain unaltered.

116

View Annotations

User admin@localhost =4

Chapter areeftfeemma - Ayodhya 18 e

Boundary Anvaya NER Action Coreference

HLOT B-HUMAN
af o

faso=ii o
TG 0
HIGT B-HUMAN
dd 0

gl 0

gd: 0

Jard 0

LTl

g 0
JEET B-HUMAN
Teafad o

=T==T A

Figure 4.14: Export Interface: NER data in the standard BIO format

format and type specifications of the heuristics, making them a pluggable compo-

nent.

4.1.1.7 Export

The export interface enables the access, retrieval and visualization of the annotated
data for each task in a clear and straightforward manner. Annotator can easily view
and export the data in two formats (1) a human-readable format for easy inspection
and (2) a machine-readable format compatible with the standard NLP tools. The
specifics of the standard format depend on the task. For example, a standard format
for NER datasets is the BIO format [Tjong Kim Sang and De Meulder, 2003], which
stands for begin, inside, and outside. The B-tag marks the beginning of a named en-
tity, while the I-tag indicates the continuation of a named entity. The O-tag signifies
that a word is not part of a named entity. Figure 4.14 illustrates the export inter-
face showcasing the capability to export NER data in the standard BIO format. The

interface facilitates the visualization and export of graph representations for tasks

117

related to graphs.

The export interface is accessible not only to annotators but also to curators,
allowing them to review annotations made by other users. This feature serves as a

mechanism for quality control.

4.1.2 Evaluation

The tool is being used for the voluminous task of annotation of a large corpus in
Sanskrit, Valmiki Ramayana. The details of this project are described in Section 4.3.
Additionally, the tool is also being used for the annotation of plain text corpus in

Bengali language.

The time taken for annotation may not be a reliable measure of evaluation for
annotation because annotators often spend more time processing the text to identify
the relevant information than physically annotating. Further, the annotations may

be spread out over multiple sessions of varying lengths over a prolonged period.

We have evaluated our tool using the two-fold evaluation method of subjective
and objective evaluation, which was also by [Terdalkar and Bhattacharya, 2021a].
The subjective evaluation consisted of an online survey, wherein, 16 annotators par-
ticipated and rated the tool, out of 5, on various categories such as ease of use, anno-
tation interface, and overall performance. The tool received mostly positive ratings,
obtaining ratings of 4.3 for ease of use, 4.4 for annotation interface and an overall

score of 4.1.

The objective evaluation was done using the scoring mechanism used in previous
works [Neves and Seva, 2021, Terdalkar and Bhattacharya, 2021a]. The extra cate-
gories introduced by [Terdalkar and Bhattacharya, 2021a] were retained and addi-
tional relevant categories for the NLP tasks were added. As a result, a total of 29 cat-
egories were used for evaluation. Antarlekhaka scored 0.79, performing better than
other tools such as Sangrahaka (0.74), FLAT (0.71) and WebAnno (0.67). Table 4.2

enlists 29 categories used for scoring the annotation tools objectively.

118

Table 4.2: Evaluation of Antarlekhaka in comparison with other annotation tools using ob-
jective evaluation criteria. Each feature is evaluated on a ternary scale of 0, 0.5 and 1, where
0 indicates absence of the feature, 0.5 indicates partial support and 1 indicates full support
for the feature.

Criteria | Tools

ID Description Weight ‘ WebAnno doccano FLAT BRAT Sangrahaka | Antarlekhaka
P1 Year of the last publication 0 1 0 0 1 1 1
P2 Citations on Google Scholar 0 1 0 0 1 0 0
P3 Citations for Corpus Development 0 1 0 0 1 0 0
T1 Date of the last version 1 1 1 1 0.5 1 1
T2 Availability of the source code 1 1 1 1 1 1 1
T3 Online availability for use 1 0 0 1 0 0 0
T4 Easiness of Installation 1 0 1 1 0.5 1 1
T5 Quality of the documentation 1 1 1 1 1 0.5 0.5
T6 Type of license 1 1 1 1 1 1 1
T7 Free of charge 1 1 1 1 1 1 1
D1 Format of the schema 1 1 1 1 0.5 1 1
D2 Input format for documents 1 1 0.5 1 1 1 1
D3 Output format for annotations 1 1 1 1 0.5 0 0
F1 Allowance of multi-label annotations 1 1 0 1 1 1 1
F2 Allowance of document level annotations 0 0 0 0 0 0 0
F3 Support for annotation of relationships 1 1 0 0 1 1 1
F4 Support for ontologies and terminologies 1 1 0 1 1 1 1
F5 Support for pre-annotations 1 0.5 0 0.5 0.5 0 0
F6 Integration with PubMed 0 0 0 0 0 0 0
F7 Suitability for full texts 1 0.5 0.5 1 1 1 1
F8 Allowance for saving documents partially 1 1 1 1 1 1
F9 Ability to highlight parts of the text 1 1 1 1 1 1 1
F10 Support for users and teams 1 0.5 0.5 1 0.5 0.5 0.5
F11 Support for inter-annotator agreement 1 1 0.5 0 0.5 0.5 0.5
F12 Data privacy 1 1 1 1 1 1 1
F13 Support for various languages 1 1 1 1 1 1 1
Al Support for querying 1 0 0 0 0 1 0
A2 Crash tolerance 1 0 0 0 0 1 0.5
A3 Web-based / Distributed annotation 1 1 1 1 1 1 1
A4 Sequential Annotation 1 0 0 0 0 1 1
A5 Support for Sentence Boundary Annotation 1 0 0 0 0 0 1
A6 Support for Word Order Annotation 1 0 0 0 0 0 1
A7 Support for Token Classification Tasks 1 1 1 1 1 1 1
A8 Support for Sentence Classification Tasks 1 0 0 0 0 0 1

Total 29 19.5 16.0 20.5 18.5 21.5 23.0

Score 0.67 0.55 0.71 0.64 0.74 0.79

4.2 Potential for NLP Research

A general natural language annotation tool has a potential to enable a variety of
research in the field of NLP. The primary benefit of such a tool is its ability to aid the
creation of datasets for the training and testing machine learning models. This can
be directly relevant for various common NLP tasks, such as lemmatization, named
entity recognition (NER), part-of-speech (POS) tagging, co-reference resolution, text
classification, sentence classification, and relation extraction, among others.
Creating NLP datasets involves annotating text with specific information or la-

bels, which machine learning models can then learn from. The annotation require-

119

ments are often specific and can be tedious. A tool with annotator-friendly and in-
tuitive interfaces can simplify this process to a great extent. High-quality, manually
annotated training datasets contribute directly towards improving the accuracy of
NLP models.

There are also higher-level NLP tasks such as: Question Answering (QA), where
questions in natural language are automatically answered; Grammatical Error Cor-
rection (GEC), where errors in written text are automatically detected and corrected;
Machine Translation (MT), which involves translating text from one language to an-
other; and Text Summarization, which involves reducing a large piece of text into a
shorter, more concise summary. The effectiveness of these higher-level tasks often
relies on the success of several low-level tasks.

For example, domain-specific question answering often involves building knowl-
edge graphs [Voorhees, 1999, Hirschman and Gaizauskas, 2001, Kiyota et al., 2002,
Yih et al., 2015]. This requires identifying named entities, linking co-references, tag-
ging parts of speech, and identifying dependency relations. These tasks must be per-
formed on the same corpus and the results from each task must be used in conjunc-
tion with one another. A multiple task annotation tool can support the annotation of
all of these tasks and interlink the data and annotations, leading to a more accurate
knowledge graph. The tool’s ability to handle large amounts of data and multiple

users simultaneously can also contribute to faster completion of these tasks.

4.3 Case Study: Annotation of Valmiki Ramayana

Valmiki Ramayana is one of the Itihasa literature in Sanskrit and holds a wealth of
diverse and intricate content. It encompasses a wide range of characters, events,
emotions, and settings, providing a comprehensive canvas for annotation. The text
of Valmiki Ramayana exhibits linguistic richness, including poetic verses, metaphors,
similes, and descriptive passages. It offers a challenging yet rewarding opportu-
nity for linguistic analysis and annotation. Further, it holds immense cultural and

historical significance. It serves as a foundation for moral and ethical values, re-

120

ligious beliefs, and social norms in many communities. Annotating this text can
help preserve and promote cultural heritage. Over the years, it has inspired various
adaptations and translations in different languages and cultures. Annotation can
facilitate comparative studies and analysis across different versions, shedding light
on its cross-cultural impact. Additionally, Valmiki Ramayana offers ample scope for
research in areas such as character analysis, narrative structure, mythological sym-
bolism, ethical dilemmas, and philosophical teachings. Annotation can uncover new
dimensions and contribute to scholarly discourse. Therefore, we have undertaken
the voluminous task of annotating Valmiki Ramayana.

We use Antarlekhaka for this large-scale annotation task. The text is obtained
from Digital Corpus of Sanskrit [Hellwig, 2021] and contains 18754 verses (38029
lines) across 606 chapters.

The task will be completed in multiple phases. The annotators participating in
the task are graduate or post-graduate level students of Sanskrit with sufficient fa-
miliarity with the corpus. In the first phase of the annotation, annotation of 4 tasks
per verse is being performed with the help of several annotators. At its peak, there
were 51 annotators online and annotating at the same time. So far, 883 verses have
been annotated with the help of 26 annotators, amounting to the completion of total
3532 tasks. These annotations have resulted in five task-specific datasets. The anno-
tation of Valmiki Ramayana is an ongoing task, and we are in the continuous process
of enriching these datasets. The ontology used for NER and action graph annotation

is available at https://sanskrit.iitk.ac.in/valmikiramayana/ontology/.

4.3.1 Sentence Boundary Dataset

Sentences boundaries in Sanskrit need not coincide with the verse boundaries. A
sentence may span across multiple verses, or a single verse may contain multiple
sentences. Therefore, the task of marking sentence boundaries is very relevant in
the context of Sanskrit NLP. Our sentence boundary dataset contains 1928 sentence

markers across 1394 verses.

https://sanskrit.iitk.ac.in/valmikiramayana/ontology/

121

4.3.2 Canonical Word Ordering Dataset

Anvaya, the task of arranging words of a sentence in a manner that is most natu-
ral to grasp its meaning, is another important tasks for Sanskrit corpora. We have

collected word ordering dataset consisting of 1847 sentences.

4.3.3 Named Entity Recognition Dataset

We have also developed a rich ontology consisting of 89 categories for NER. The on-
tology covers various plant, animal and humanoid species, places, vehicles, weapons,
ornaments, instruments, clans, time, and a wide variety of concepts relevant to
Valmiki Ramayana. This ontology has been used for the identification and classifi-

cation of 1644 named entities from 886 verses.

4.3.4 Co-reference Resolution Dataset

The text of Valmiki Ramayana is rich with several characters and their interaction
with each other. It serves as a good corpus for the task of co-reference resolution.
We have created a dataset for co-reference resolution which consists of 2226 co-

reference connections.

4.3.5 Action Graph Dataset

An action graph is a sentence-level graph that captures ‘action words’, i.e., verbs,
participles, and any other words that denote actions, and their relations with other
words in the sentence. We first create a list of 44 relations through which an action
word may connect to other words. This compilation is an outcome of minor adap-
tations made to the dependency tagset for Sanskrit developed by [Kulkarni, 2020].
Using this set of relations, We have collected 29 action graphs consisting 250 rela-

tions from 25 verses.

122

4.4 Summary

We have developed a web-based multi-task annotation tool called Antarlekhaka for
sequential annotation of various NLP tasks. The tool is language-agnostic and has
a full Unicode support. The tool sports eight categories of annotation tasks and an
annotator-friendly interface for each category of task. Multiple annotation tasks
from each category are supported. The tool enables creation of datasets for compu-
tational linguistics tasks without expecting any programming knowledge from the
annotators or administrators. The tool has a potential to propel several research
opportunities in the field of natural language processing.

The tool is actively being used for a large-scale annotation project, involving a
large Sanskrit corpus and a significant number of annotators, as well as another
annotation task in Bengali language. The tool is also actively maintained. In the
future, we plan to integrate various state-of-the-art NLP tools to add out-of-the-box

support for several languages and aid annotators by providing suggestions.

Chapter 5

Chandojfianam: Sanskrit Meter

Identification and Utilization

Majority of the Sanskrit literature is in the form of poetry that adheres to the rules
of Sanskrit prosody or Chandahsastra, which is the study of Sanskrit meters, known
as chandas. The purpose of chanda is primarily to add rhythm to the text so that it is
easier to memorize. Additionally, it also helps in preserving the correctness to some

extent.

We now present Chandojiianam, a web-based Sanskrit meter (chanda) identifica-
tion and utilization system. In addition to the core functionality of identifying me-
ters, it sports a friendly user interface to display the scansion, which is a graphical
representation of the metrical pattern. The system supports identification of meters
from uploaded images by using optical character recognition (OCR) engines in the
backend. Itis also able to process entire text files at a time. The text can be processed
in two modes, either by treating it as a list of individual lines, or as a collection of
verses. When a line or a verse does not correspond exactly to a known meter, Chan-
dojianam is capable of finding fuzzy (i.e., approximate and close) matches based on
sequence matching. This opens up the scope of a meter based correction of erro-
neous digital corpora. The system is available for use at https://sanskrit.iitk.

ac.in/jnanasangraha/chanda/, and the source code in the form of a Python li-

https://sanskrit.iitk.ac.in/jnanasangraha/chanda/
https://sanskrit.iitk.ac.in/jnanasangraha/chanda/

124

brary is made available at https://github.com/hrishikeshrt/chanda/.

5.1 Introduction

The digitization of Sanskrit text is achieved primarily through two methods: (1) man-
ual data entry and (2) scanning of documents followed by optical character recogni-
tion (OCR). The former suffers from human error while the latter is prone to inaccu-
racies due to automated processing. Further, with the rise of social media, blog sites
and Unicode, there is a large replication of Sanskrit text on the Internet with little
quality control, thereby further increasing errors in the text.

We argue that a non-trivial portion of the errors introduced in texts through var-
ious sources can be detected by the process of meter identification. The Chando-
jianam system exhibits tolerance towards erroneous texts and is able to locate the

errors as well as make suggestions for fixing them.

5.1.1 Motivation

The motivation behind Chandojiianam can be better understood with the following

scenarios.

» A Sanskrit enthusiast wants to identify the meter of a verse from a PDF file with
Sanskrit text. She however, lacks the capability to effectively type the Sanskrit
text, and prefers to upload a screenshot of the specified verse to identify the
meter. With Chandojiianam, she is able to perform meter identification directly

from the image.

* A teacher of Chandahsastra wants to explain the rules of Sanskrit prosody to
her students using several examples. She does not want to spend precious
time on writing down all the intermediate steps in the identification of a meter.
Instead, she wants a system that will do this job for her. Chandojfianam fits the

bill nicely.

https://github.com/hrishikeshrt/chanda/

125

* Abudding poet is trying to compose Sanskrit poetry adhering to a specific me-
ter. However, she is not an expert, and may have made some errors. She wants
to locate these errors so that she can correct it. Chandojihanam lets her locate

these errors, and also provides suggestions for correction.

» A Sanskrit researcher wants to analyse a large Sanskrit text file and obtain
metrical statistics of the entire corpus. Chandojiianam allows her to upload the

text file and quickly obtain the required statistics to aid her in her research.

These examples highlight the utility of Chandojianam, in addition to just satisfy-

ing one’s curiosity about Sanskrit meters.

5.1.2 Background

The classification of syllables into laghu (short) and guru (long) forms the core con-
cept of Chandahsastra [Deo, 2007]. The classification is related to the amount of time
it takes to pronounce a specific syllable; in particular, the short syllables are termed
laghu and the long syllables guru. Specific sequences or combinations of laghu and
guru letters result in a particular rhythm or chanda.

A verse (8loka) is composed of four parts, each known as a pada. Every meter
has a constraint on the sequence of syllables that should be followed in a pada. For
example, the meter Paficacamara is defined by each pada having 16 syllables with
the following laghu-guru sequence of syllables: LGLGLGLGLGLGLGLG". The perfect al-
ternation of laghu and guru syllables is a reason for its energetic tempo, as can be
experienced in the hymns such as Sivatandavastotram? or Narmadastakam?®. In a sim-
ilar manner, numerous Sanskrit meters have been defined in the texts on Sanskrit
prosody such as Vrttaratnakara.

The unique sequence of laghu-guru markers used to identify a meter is hereon re-

ferred to as lg-signature of that meter. The term, in reference to an arbitrary Sanskrit

We use letters L and G to denote laghu and guru syllables respectively.
2https://shlokam.org/shivatandavastotram/
%https://shlokam.org/narmadashtakam/

https://shlokam.org/shivatandavastotram/
https://shlokam.org/narmadashtakam/

126

line, is used to refer to its decomposition in the laghu-guru sequence. Chandahsastra,
for brevity and ease of remembering, identifies all laghu-guru sequences of length 3
with a unique letter. This unique 3-length sequence is known as a Gana. The pos-
sible number of ganas is 2° = 8. More details about the terminology and rules of
Chandahsastra can be found at https://sanskrit.iitk.ac.in/jnanasangraha/
chanda/help. Several previous works [Deo, 2007, Mishra, 2007, Melnad et al., 2013]

also discuss the theory of Chandahsastra in detail.

5.1.3 Related Work

There have been several efforts in the area of automatically identifying meter from
Sanskrit text. Some of these tools [Mishra, 2007, Melnad et al., 2013] were only pre-
sented as web interfaces, which are no longer functional.

More recent works [Rajagopalan, 2020, Neill, 2023] provide both a web interface
and a software library. However, the web interfaces provided by [Rajagopalan, 2020]
and [Neill, 2023] both assume that a single verse will be provided as an input, lim-
iting its usability to quickly check meters for a set of verses. Thus, even for a text
consisting of a small number of verses, the input has to be provided as many times
as there are number of verses. [Neill, 2023] attempts to address this issue by allow-
ing upload of text files. However, it still lacks a display in case one wants to visualize
meters for multiple verses. More significantly, identifying the meter of a single pada
or a partial verse is not possible at all, as any text entered is assumed to consist of
exactly four padas.

Error tolerance, i.e., the capacity to identify the meter of a verse in the presence
of errors, is an important requirement for a meter identification system. To be useful
for error correction, a system should be further able to detect exact locations of error
and suggest corrections. [Neill, 2023] uses a scoring system resembling majority rule
on the padas of a verse to identify its meter. However, it assumes pada matching
to be exact. In other words, even if there is a single error in a pada, the system

reports that pada as a mismatch. As a result, when there are errors in three padas,

https://sanskrit.iitk.ac.in/jnanasangraha/chanda/help
https://sanskrit.iitk.ac.in/jnanasangraha/chanda/help

127

Table 5.1: Feature comparison of extant meter identification systems

Features [Mishra, 2007] [Melnad et al., 2013] [Rajagopalan, 2020] [Neill, 2023] Chandojfianam
Availabilit Web Interface vt v'E v v v
¥ Software Library v v v
Text v v v v v
Arbitrary Lines v
Input Multiple Verses v
Textfile Upload v v
Image Upload v
Meter Identification v v v v v
Functionality Error Tolerance v v v
Fuzzy Matching v v

due to the majority of padas being mismatched, the overall meter for the verse is
reported as ‘unknown’. Further, it lacks any suggestion mechanism. Barring the
admirable work by [Rajagopalan, 2020], none of the other tools attempts to perform
fuzzy matching (i.e., approximate matching) to handle erroneous text. The chanda
suggested by [Rajagopalan, 2020] is, however, the one that is perceived as the best
by its fuzzy matching algorithm, which may not always be the actual chanda of the
verse. Therefore, providing a top-k ranked list of matches is more useful.

Further, none of the existing tools has a functionality to upload images for meter
identification.

Chandojiianam attempts to overcome the shortcomings of the previous tools by
providing a comprehensive set of user-friendly features. There is a special focus
on fuzzy matching (explained in Section 5.2.4.2) and the utility of Chandahs$astra for
correction of digital corpora.

Table 5.1 presents a feature matrix comparing the other works with Chandojia-

nam.

5.1.4 Contributions

We present, Chandojiianam, a Sanskrit meter identification and utilization system,
which in addition to identifying a meter, also aims to catch errors in the text and
suggest corrections. The aim of the tool is to make this process easy for a non-

programmer. The salient features of Chandojiadnam can be summarized as follows:

*http://sanskrit.sai.uni-heidelberg.de/Chanda/HTML/ is no longer functional.
Shttps://sanskritlibrary.org:8080/MeterIdentification/ is no longer functional.

http://sanskrit.sai.uni- heidelberg.de/Chanda/HTML/
https://sanskritlibrary.org:8080/MeterIdentification/

128

The tool is available as a web-application that can be used from any standard
browser and requires no other installation from the user. The library is also

made available for the benefit of programmers.

There are three prominent input options: (1) plain text, (2) images (screen-

shots) and (3) text files.

The input can be in any of the standard transliteration scheme that can be de-
tected by the indic-transliteration [Sanskrit programmers, 2021] library. This

applies to all three input methods.

The image files can be processed using one of the two OCR engines, namely,

Google OCR and Tesseract OCR, and the detected text can be further edited.

The lines from input are detected based on several standard line-end markers,

such as A\n’, “I’, ‘I’ and ¢.’

Meter identification can be performed on the line (pada) level. The input is

treated as a set of lines. Therefore, the input can be any arbitrary set of padas.

Meter identification can also be performed on a verse (Sloka) level. In this case,
the system treats the lines as being parts of a verse. Cumulative cost of each
line is minimized to identify the meter of the verse. Multiple verses can be

provided.

For erroneous inputs, the tool provides a robust fuzzy matching support us-
ing edit distance comparison, which helps in identifying and highlighting the
places where an error might be present. Additionally, there is a suggestion

module to help the user understand what changes can be made to the input.

Informative display shows the steps involved in the meter identification, which

is aimed to help learners of Chandahsastra.

Results can be downloaded in the JSON format.

129

Preprocessin; Matchin;
Input repr ing ing

CIJ Meter Direct Matches
Definitions _MEtef
Signatures

Text Entry

o >
/\(\ . Regex Matches
Text Processing

Display
Results

Image File

Text—»
Transliterate Find Lines Syllables Laghu-Guru Fuzzy Matches
Text File

Figure 5.1: Workflow of the Chandojianam system

The Chandojfianam system can be accessed online at https://sanskrit.iitk.
ac.in/jnanasangraha/chanda/. The source codeisaavailableathttps://github.

com/hrishikeshrt/chanda/.

5.2 The Chandojfianam System

In this section, we discuss the inner workings of the Chandojfianam system. Figure 5.1
illustrates the overall workflow of the system. Initially, definitions of Sanskrit me-
ters are read into the system and stored in the form of a dictionary, referred to
hereon as the metrical database. A user may specify the input in any of the three
specified formats, namely, plain text, image containing text, and text file. For image,
the text is extracted using OCR systems. After the text is extracted, the transliteration
scheme is detected, and converted to the internal transliteration scheme, which is
‘Devanagari’. From the text, lines are detected which, in turn, are split into syllables
to obtain the Ig-signature of the lines. The metrical database is then queried using
the meter detection algorithm and the matches are presented to the user along with
useful information. In case of erroneous inputs, £ = 10 closest matches are also

shown, along with the suggestions for corrections.

5.2.1 Chanda Definitions

There are two main types of meters, Varnavrtta and Matravrtta [Melnad et al., 2013].

Currently, the system only deals with Varnavrtta. In future, we will enable the sys-

https://sanskrit.iitk.ac.in/jnanasangraha/chanda/
https://sanskrit.iitk.ac.in/jnanasangraha/chanda/
https://github.com/hrishikeshrt/chanda/
https://github.com/hrishikeshrt/chanda/

130

T rg ror St JgREgEAT WET Al
RIHGIEETIER] HESTEAdT TRATACH TR TAACR R TR e 19 30 12,7
SIE HAGTT TRRRRTER TR " 20 47
G 1 e AT 11 14
ST 2 TSR NNENUGNUEUIST 12 16
TRy 1 awEd AT 10 13
TRy 2 SR AAAATTRTRT 10 13
R 3 T TeTTeTeTeRTerenT 10 14
ey 4 gaga NNANUENEUGUED 13 18
HIEY 1 - L 8
Y 2 - - 8

Figure 5.2: Generic chanda definition format
Table 5.2: Chanda Definitions specification format
Column Requirement Description
Vrtta required Name of the meter described in the row
Pada required Index of pada in the corresponding vrtta; the pos-
sible values are <blank>, 1, 2, 3 and 4.
Laksana required lg-signature of the meter
Gana optional Signature of the meter in the compressed (trika)
notation
Aksarasamkhya optional Number of letters in the pada
Matra optional Number of matras in the pada
Yati optional Indices corresponding to yati

tem to handle Matravrtta as well. Varnavrtta can be further divided into three cat-
egories, namely, Samavrtta, Ardhasamavrtta and Visamavrtta. This categorization is
performed based on the symmetry or lack thereof of the metrical pattern exhibited
by the four padas of a sloka adhering to the meter. All four padas following the same
pattern is termed as Samavrtta, odd and even padas following a different pattern is
termed as Ardhasamavrtta, and all four padas following a different pattern corre-
sponds to Visamavrtta.

Chanda definitions are specified in the tabular format as illustrated in Figure 5.2.
The legend is described in Table 5.2. It can be noted that the value corresponding
to the column pada denotes the index of pada in the meter described in that row.
This way of specifying definitions results in a uniform treatment of samavrtta, ard-

hasamavrtta and visamavrtta. Additionally, a regex pattern (regular expression) defi-

131

nition can also be specified, where the metrical restriction only applies to a part of
the pada. The most commonly used meter in Sanskrit, namely, anustubh, is a prime
example of such regex patterns. Specifically, the requirements for anustubh chanda

are:

» Every pada must contain exactly 8 syllables.

The 5th syllable of every pada must be a laghu syllable.

The 6th syllable of every pada must be a guru syllable.

The 7th syllable of the even padas must be a laghu syllable.

» Thereis no other restriction on the other syllables, i.e., they can be either laghu

or guru.

Therefore, the two regex patterns [LG] [LG] [LG] [LG]LG[LG] [LG] and
[LG] [LG] [LG] [LG]LGL[LG] correspond to the lg-signatures for the odd numbered
and even numbered padas of Anustubh respectively.

Internally, the meter database is stored in the form of dictionaries in two ways:
signature of individual padas is stored as CHANDA_SINGLE, while signature of con-
secutive padas is stored as CHANDA_MULTIPLE. It may often happen that two padas of
the input verse are given as a single line without any kind of line marker. The sec-
ond dictionary acts as a fail-safe when the lines couldn’t be split in a proper manner
due to lack of punctuation or line-breaks.

For example, for the meter Bhujangaprayata, which has a signature Ig3®, corre-
sponding to the lg-signature of LGGLGGLGGLGG, two independent entries are main-

tained.

CHANDA_SINGLE = {
"LGGLGGLGGLGG': ['Bhujangaprayata'],
"[LG] [LG] [LG] [LGILG[LG][LG]"': ['Anustubh (Pada 1)'],

"[LGI[LGI[LGI[LGILGL[LG]"': ['Anustubh (Pada 2)']

5Gana T corresponds to the lg-sequence LGG.

132

CHANDA_MULTIPLE = {
'LGGLGGLGGLGGLGGLGGLGGLGG' : ['Bhujangaprayata (Pada 1-2)'],
"[LG][LG] [LG] [LG]ILG[LG] [LG][LG] [LG] [LG] [LGILGL[LG]":

['Anustubh (Pada 1-2)']

The system currently contains a database of over 200 meters, which is smaller in
comparison to the database utilized [Rajagopalan, 2020]. However, it is important to
note that the quantity of data does not always guarantee improved performance, as
discussed in detail by [Rajagopalan, 2020]. The primary reason for not importing a
large number of meters is that the lower number results in less false positives when
dealing with erroneous input. More meters may be included in the system in future

based on user feedback.

5.2.2 Input

The input for meter identification is Sanskrit text, and it can be provided to our
system in three ways. The simplest form of input is a direct text entry, wherein, a
user may type or copy-paste Sanskrit text in any valid transliteration scheme into a
text input box.

Perhaps a more useful option, which is a novelty of our tool, is the ability to pro-
cess images containing text. Two well-known OCR engines, Google Drive OCR” and
Tesseract OCR® [Kay, 2007] are supported. Google Drive OCR functions by making use
of Google’s Drive API v3° to upload files to Google Drive, while Tesseract OCR V5 is
a neural network (LSTM) based OCR engine. Python libraries google-drive-ocr*®

[Terdalkar, 2022] and pytesseract! [Lee, 2022] are utilized respectively to access

"https://support.google.com/drive/answer/176692?hl=en

8https://github.com/tesseract-ocr/

®https://developers.google.com/drive/api/v3/reference
Ohttps://github.com/hrishikeshrt/google_drive_ocr
https://github.com/madmaze/pytesseract

https://support.google.com/drive/answer/176692?hl=en
https://github.com/tesseract-ocr/
https://developers.google.com/drive/api/v3/reference
https://github.com/hrishikeshrt/google_drive_ocr
https://github.com/madmaze/pytesseract

133

- : ; Upload Choose image file Browse
et AT T AAFASIEE G e |
AHETER AR g AEnd Google OCR © Tesseract OCR

A ZHAEAEHTS THEZH |

Figure 5.3: Upload a screenshot of a verse to Chandojfianam for meter identification

the OCR systems. Google Drive OCR is generally more accurate than Tesseract OCR
but slower due to the network latency imposed by upload of files. The output of ei-
ther of the OCR systems, i.e., the recognized text, is treated as if directly entered by
the user. The output is not always accurate, especially if the image contains noisy
text. Therefore, the system also lets user edit the optically recognized text and re-
submit it to the system. Figure 5.3 shows the interface to upload images for meter
identification.

For bulk processing, the option to upload a text file is also available. After reading
the uploaded file, the text is again treated as if directly entered by the user.

The identical treatment of all input allows the same meter identification pipeline
to follow. For example, as the transliteration module is triggered after the process-
ing of input text, all three input methods have full support for input in any valid

transliteration scheme.

5.2.3 Text Processing

Once the text input is obtained and cleaned, it passes through four primary process-

ing steps.

1. Transliteration: The task of transliterating Devanagari text can be considered
as a solved problem thanks to the presence of robust transliteration tools such
as indic-transliteration*? [Sanskrit programmers, 2021] and Aksharamukha?
[Rajan, 2018]. We rely on indic-transliteration for detection of input scheme;
thus, any transliteration scheme detectable by indic-transliteration is also sup-
ported by our system. The internal transliteration scheme is set to ‘Devana-

gari’, which is a convenience choice.

2https://pypi.org/project/indic-transliteration/
Bhttps://aksharamukha.appspot.com/

https://pypi.org/project/indic-transliteration/
https://aksharamukha.appspot.com/

134

2. Pada Split: The contiguous text is now split into lines (padas) based on several
standard line-end markers, such as \rn’, ‘I, ‘I and ‘.”. Chandojiianam uses pada

as a unit for meter identification.

3. Syllabification: The process of splitting text into syllables is fairly straight-
forward for majority of Indian languages due to phonetic consistency of the
alphabet. The Devanagari Unicode has special vowel markers for all vowels
except ‘3 (a). The presence of vowels with consonants, therefore, can be eas-
ily identified with these markers, and syllables can be separated. The absence
of vowel marker for the vowel ‘37 (a) can be treated by noting that for a joint
consonant, Unicode always uses the halanta marker ;. So, two consecutive
consonant characters indicate the presence of a vowel ‘3" with the first conso-
nant. For example, the Unicode string “HRd” consists of 4 Unicode characters:
‘4, ‘T, ¥ and d. However, it corresponds to 6 Devanagari letters (varna),
namely, ‘97, 37, T, ‘37, T and ‘3. Every vowel signifies an end of a syllable,
resulting in three syllables, namely, ‘4T, ¥ and ‘@. Thus, in a single scan of the
string, syllabification can be performed. We use the sanskrit-text* Python

library to perform this task.

4. Laghu-Guru Marks: The syllabification process is a prerequisite for obtain-
ing the lg-signature of a Sanskrit line. Standard rules of Sanskrit prosody de-
scribed in numerous articles [Deo, 2007, Melnad et al., 2013, Rajagopalan, 2020]
are followed to mark each syllable as laghu or guru. A general rule of Pingala’s
Chandahsastra states that the last syllable of a pada should be treated as a guru.
However, there exist meters in the Chandahsastra whose signatures contain the
last syllable as laghu (Padanta Laghu). Therefore, we compute the Ig-signature

without forcing the last letter to be guru.

This completes the text processing which makes the text ready for the next stage,

which is meter identification.

Yhttps://pypi.org/project/sanskrit-text/

https://pypi.org/project/sanskrit-text/

135

Algorithm 1: Meter Identification
Data: Metrical Database (M D)
Input: lg-signatures corresponding to each ‘line’ in the input
(T ={lg1,1lg2, .-, lgn})
Output: Result set containing exact or fuzzy matches
1 foralllg € T'do

2 SM; = FindDirectMatch(lg, CHANDA_SINGLE’)

3 SMs, =FindDirectMatch(lg, ‘CHANDA_MULTIPLE’)

4 RM =FindRegexMatch(lg, ‘CHANDA_SINGLE’ + ‘CHANDA_MULTIPLE’)
5 DM = SM, + SMy + RM

6 | FM =6

7 | if DM = ¢ then

8 | FM =FindFuzzyMatch(lg)

9 end

10 return DM + FM

11 end

Algorithm 2: Direct Matching
Input: lg-signature
Output: Result set containing exact matches
1 Function FindDirectMatch(lg, ‘MD’)
M = Query(lg, ‘MD’) // dictionary lookup
My =¢
if M, = ¢ then // if no match found
if the last letter of lg is laghu then
g1 = replace last letter of g with guru
M2 = Query(lgl, ‘MD’)
end
end
return M; + M,

© 0 9 o 1 R W N

[y
=]

5.2.4 Meter Identification Algorithm

The meter identification problem, in its simplest form, is a dictionary lookup on Ig-
signatures of meters. In practice, however, there can be several additional consider-
ations. The algorithm used by our system is described in Algorithm 1. The algorithm
consists of a direct dictionary lookup, regular-expression based lookup and fuzzy

matching. These are explained in the subsequent sections.

136

5.2.4.1 Direct Matching

Finding a direct match involves trying to find the match in the both the dictionaries
in the metrical database that store the meter signatures. Further, for meters with

regex specification, regular-expression-based matching is performed.

As mentioned in Section 5.2.3, we compute the lg-signature without enforcing the
last syllable to be guru. If the last syllable was laghu and no direct match was found,
we attempt to find a direct match by treating the last syllable as guru. Algorithm 2 de-
scribes this process. The function Query corresponds to a simple dictionary lookup

and returns a set of matches.

In theory, this should be sufficient. However, in practice, one often encoun-
ters erroneous text. This is expected since a large amount of Sanskrit text available
digitally is a result of either manual entry or post-scanning OCR followed by man-
ual correction. As a result, due to human errors or OCR inaccuracies, errors such
as the following may be found in the texts available online [Sankaran et al., 2013,

Kumar and Lehal, 2016].

* Characters may be misspelt, e.g., & (ru) as ¥ (r1)

« Characters may be missing, e.g., & (vargai) as 3 (vagai)

* Characters may be misidentified, e.g., % (r) as % (kra)

* Characters may get split, e.g., & (kha) as ¥d (rava)

Most of these errors may also affect the metrical pattern of a line and, therefore,
meter identification is a useful tool to identify them. It should be mentioned here
that not all errors lead to metrical mismatch. For example, an error such as the
confusion between letter pairs such as 9, 9 or #, ¥ would not affect the meter pattern

and, thus, cannot be captured by only meter identification.

Input text Output Scheme:

T T T AP

T e g afifdtse

HETE QUaH el

Y At A AN

Verse Mode © Line Mode
Results nu
Aksarani I 7 & ¥ @a@ ¥ & ¥ mMog ¥ A
Laghu-Guru a 7 T 4 T T A T T F AT
Gana T T q q
Counts 12 &Ry, 19 AET:

Jati STt

Chanda syeTETT (1 edit)

Chanda eTguard (1 edit)

Fuzzy Matches

Chanda Gana Cost
ST Bopn 1
(0, =, <, [, 0], [7, @ A, (4 g el A1)

Hfrerofy TR 2

[i(G), 'd@y, =, "R, [«, <], [@', &, &Y, [, ', "9,)
Rreagemmrar FATT 2
[Ld@y, =, =, &, '], [, &, @, (4, 7, K, A
FHHTET (UTE 1-2) WRITTT 3
[0, (LY, Ly, =, [, @, [@, LA (G, AT
geam qaR 3
[[rd@y, =, &, (&, 'ar], [, =, (@)L, (71, 7, §(G), 'i(G), "]

Figure 5.4: Meter identification with fuzzy matching and suggestions

137

Similarity
91.7%

83.3%
81.8%
78.6%

75.0%

Algorithm 3: Fuzzy Matching

Input: lg-signature and k

Output: Result set containing top-k£ fuzzy matches

1 Function FindFuzzyMatch(lg, ‘MD’, k)

cost, suggestion = Transform(lg, lg-signature of chanda)

2 results = ¢

3 forall chanda in ‘MD’ do

4

5 if suggestion then

6 \ results += (chanda, cost, suggestion)
7 end

8 end

9

return top-k results with lowest cost

5.2.4.2 Fuzzy Matching

For non-exact matches, we model the problem as that of finding the nearest matching

string for the Ig-signature of the text. In particular, we compute the Levenshtein’®

edit distance of the observed pattern with all the known patterns. We then find the

similarity by first normalizing the edit distance using the length of the target match,

and then subtracting it from 1.

Levenshtein distance

Similarity = 1 —

length of target match

We present the topmost £ matches as the possible fuzzy matches (currently, k =

10). Algorithm 3 and Algorithm 4 describes the core functions pertaining to fuzzy

matching. The Similarity column in the interface (Figure 5.4) shows the similarity

Bhttps://en.wikipedia.org/wiki/Levenshtein_distance

https://en.wikipedia.org/wiki/Levenshtein_distance

138

Algorithm 4: Transform String Sequences

Input: String sequences seqi, seqs

Output: Suggested edit operations required to transform seq; into seq, and
the cost of transformation

Function Transform(seq, seq,)

2 edit_ops = GetLevenshteinEditOps(seqi, seqs) // using

python-Levenshtein

3 weights = {‘replace’: 1, ‘delete’: 1, ‘insert™ 1}

4 | COSt=3" o eait ops Weights[op]

5 suggestion = AddEditOpsMarkers(seq;, edit_ops) // add suggestions

6 return cost, suggestion

-

instead of the edit distance.

For finding the edit-distance and edit-operations, we use the python-Levenshtein'®
library [Haapala, 2014]. The AddEditOpsMarkexrs function (Line 5) formats the orig-
inal list of syllables by adding suggestions based on the edit operations. The sugges-
tions shown contain the characters from the original string, along with the suggested
places where a change might be required. Suggested changes for each meter corre-
spond to the changes needed to transform the given line into that meter.

The suggestions are identified by three letters i, d and r, indicating insert, delete

and replace operations respectively. They are used in the following manner.

¢ i(L/G):
This notation indicates the insertion of a new syllable. i(L) (respectively,

1(G)) indicates that a laghu (respectively, guru) syllable needs to be inserted.

* r(letter)[L/G]{suggestion}:
This notation indicates that the syllable needs to be replaced by a laghu or a
guru syllable (depending upon the marker). In some of the cases, a suggested
change of syllable may be included. A simple heuristic that is followed re-
places the laghu syllables corresponding to the laghu vowels ¥, ¥’ and & by
their guru vowel counterparts, namely, % % and T, respectively, and vice

versa.

®https://pypi.org/project/python-Levenshtein/

https://pypi.org/project/python-Levenshtein/

139

e d(letter):

This notation indicates that the syllable needs to be deleted.

The process of fuzzy matching can be better understood with the help of an ex-

ample. Consider the first line of the example depicted in Figure 5.4.

« Line: THE ET dcdel HIGYH

* LG-Signature: LGGLGGLGGLLG

Nearest Match: LGGLGGLGGLGG (cost 1) (Bhujangaprayata)
« Suggestion: [, &, &'], [&, &', [@, ‘&, &', [, T, (PG, 7]

The exact match for the line is not found in the system and, therefore, we find
the edit-distance of this lg-signature with every lg-signature from the database. It
is found that the Ig-signature LGGLGGLGGLGG of Bhujangaprayata meter is the closest
and is only 1 edit-distance away. The required change is to replace the 11th letter
from L (laghu) to G (guru). It is also suggested'” to replace the laghu letter ¥ into a

guru letter 9,

5.2.4.3 Verse Processing

Meter identification can be performed by treating the input either as a set of arbi-
trary lines (Line mode) or as a collection of verses (Verse mode). The Line mode is
useful for checking meter of a single line or a set of lines. The treatment of the text
as a verse differs insofar as it attempts to minimize the cumulative cost of the meter
matches over each line.

Consider a sample verse adhering to the meter Salini, albeit with a deliberate
small error in the first pada. Figure 5.5 highlights the difference between the two
modes of meter identification. The correct word Hfcqdr has been replaced by two

words 79 fUdl. As a result, the first pada does not find an exact match. Further, the

17The suggestion module is currently limited to the suggestions of the nature of toggling between
alaghu and a guru vowel marker.

140

Input text Output Scheme:
Input text Output Scheme: T 2T 7 T
Tt 3 e I |

T <7 T e T i A el TR

Tt 3 e e | A S A S T S

R A T TR

A ST 3 S A SR O Verse Mode Line Mode

Verse Mode © Line Mode Results nn

Results na 1. srferf
Aksarani mo@ w @ o7 7w A o@w woT o= Aksarani mo@ ¥ @ o"w 7w foamwomw oI o=
Laghu-Guru T T 0T 7 @ 9 @ T "qod qoq Laghu-Guru T T T 7 @ @ @ T T @@ T T
Gana " g k2 k) Gana q o g q
Counts 12 3RO, 20 7T Counts 12 3rerIfor, 20 AT

Jati ST Jati Euci

Chanda ardiHt (1 edit) Chanda it (2 edits) + Fuzzy

Figure 5.5: Meter identification from a verse in (a) Line mode and (b) Verse mode
Chanda ardrHt (1 edit) S0 Chanda enfert (2 edits) - Fuzzy
Fuzzy Matches Fuzzy Matches
Chanda Gana Cost Similarity # Chanda Gana Cost Similarity
1 adf TN 1 90.9% 1 afortt HIRTT 2 81.8%
[[rar, ar], (=, ‘=], (=2, =), [y,), (2, w, =,) (=, ‘av), (=, =@, d@), rE)e]], [, |, (2w, =)
2 ugfift ST 2 84.6% 2 gt HIFTTT 1 90.9%
[[rar, @], (2, L, (=, =), R &, riL i, = =) ([,), (=, =, =, pd@y, @), e, =)

Figure 5.6: Fuzzy matches in (a) Line mode and (b) Verse mode

closest match based on edit distance is found to be the meter Vatormi with an edit
distance of 1. Therefore, when in the Line mode, the suggestion is made as Vatormi.
However, rest of the three padas are exact matches for Salini. Therefore, the cumu-
lative cost of Salini over the entire sloka is the lowest (here, it is 2). Thus, in the Verse
mode, the identified meter for the verse is Salini. This highlights the utility of the
Verse mode.

In the list of fuzzy matches shown, the meter identified for the verse is shown
first. Figure 5.6 shows that the meter Salini is shown for the first pada despite having

a higher edit cost.

5.2.5 Output

A blackbox that only identifies meter would not be as interesting as a system that
also explains (‘teaches’) the steps. Therefore, in addition to the meter name, scan-
sion details such as Ig-signature, gana-signature, count of letters and count of matras
are also displayed. Additional information displayed in the case of fuzzy matches

is already discussed in Section 5.2.4.2. Entire result is displayed in a neat tabular

141

format (as displayed in Figure 5.4) which makes the system useful for learners of
Chandahsastra.

Cumulative statistics such as number of lines identified, number of lines not
identified, frequency distribution of exact and fuzzy matches etc. can also be viewed.
Additionally, the data can also be downloaded. The data download supports two for-
mats, a compact format for quick visual inspection, and a detailed JSON format for

further computational processing.

5.2.6 Utility

We can identify several use-cases for Chandojiianam, some of which have already

been discussed in Section 5.1.1:

» The primary use-case, naturally, is the ability to identify meters from Sanskrit

text.

* Ability to upload of images and identification of meters from it is another im-

portant scenario.

* Identification of errors from the Sanskrit text which has been created through
the process of OCR, but not manually corrected yet, serves as another promi-

nent use-case.

» Additionally, the system can be used to obtain metrical statistics from large
texts automatically. These statistics may also help a user identify errors, if any,
at a quick glance. For example, in the case of texts such as Meghadata, which
follows a single meter, namely, Mandakranta, any anomaly will be quickly spot-

ted by appearance of a different meter in the statistics.

* A user may be interested in creating poetry in Sanskrit, and may require as-

sistance in quickly checking the metrical consistency of her creation.

* Learners of Chandahsastra may want to try out several examples to understand

the process of meter identification in-depth.

142

Input text Output Scheme: Devanagari ~ ~ Input text Output Scheme: Telugu ©

G &1 Sl Gorrarad S gst

Fefeh AfereT TSt forwa weferr st

FEfIEHE a2 AT ger srEt

it e 2E A et srEt

O Verse Mode Line Mode e © Verse Mode Line Mode

Results nE Results un
1. gl 1. sdgoles
Aksarani gdgafRagaegdgsaa & & f v Aksarani 28 8 &9 % % pS3E K S0 &8 aw Bo o aE
Laghu-Guru g T ddd T T T Fd AT T d T T FT Laghu-Guru o © K K © © K © K © © K K K o K K o &
Gana il q S q T a7 Gana 3 & 8 B 20 as o A
Counts 17 3igrifo, 24 AT Counts 20 syllables, 30 morae

Jati srafe: Jati)8

Chanda et Chanda Sodesoias

Figure 5.7: Meter identification from other Indian languages, e.g., (a) Marathi (b) Telugu

» Several Indian languages, e.g., Marathi, Telugu, etc., exhibit rules of prosody
similar to Sanskrit. Due to comprehensive transliteration support provided
by the indic-transliteration library, text written in scripts other than Devana-
gari can be also used in the same manner. Figure 5.7 illustrates the usage of
Chandojianam for meter identification from Marathi and Telugu. Here, we
are assuming that the same metrical database is used. However, there may
be language-specific differences in the rules of prosody as well as variety of

meters. Hence, the multilingual support is still primitive.

5.3 Evaluation for Error Correction

One of the primary goals of Chandojiianam is to facilitate error detection from the
Sanskrit text obtained from various sources. Consequently, we evaluate the ability

of the tool to correctly identify the meters from erroneous text.

5.3.1 Corpus

Evaluation of a meter identification system requires tagged metrical data. As men-
tioned by [Rajagopalan, 2020], Meghadta composed by Kalidasa [Kale, 2011], being
entirely in Mandakranta meter, is an ideal corpus for evaluation. The same text, avail-
able from various sources, can also differ greatly in terms of encoding, character-

by-character comparison and errors present. We use three online sources, namely,

143

Wikisource'®, sanskritdocuments.org'® and GRETIL?® to obtain three different ver-
sions of Meghadita.

In addition to Meghadata, we also use texts with more metrical variety. We
choose three texts from Wikisource, namely, Santavilasa®!, Sriramaraksastotra®? and
Rajendrakarnapura®®. We manually tag meters for each verse from these texts. To-
gether, the 4 datasets contain 1038 verses, exhibiting 17 distinct meters.

Further, to evaluate the proposed use-case of post-OCR correction, we simulate
the digitization pipeline. First, we synthetically create a PDF from each corpus in

the following manner:

» We open the text file in a text editor. (We use gedit with Sanskrit2003 font.)
* We next trigger the operating system’s (Ubuntu 18.04) print dialogue (Ctr1+P)

* We use the ‘Print to File’ option and save the file as PDF.

A PDF file created in this manner is the best-case scenario for OCR engines, as it
contains no noise. Now, we run both the OCR systems and obtain the OCR-ed ver-
sions of the text. As a result of this simulation, we can now realistically evaluate the

detection and correction of errors introduced in the process of OCR.

5.3.2 Results

We use the following abbreviations for different versions of the corpora:
* WS: Wikisource
* SD: sanskritdocuments.org

* GR: GRETIL

Bhttps://sa.wikisource.org/s/1c5

¥https://sanskritdocuments.org/doc_z_misc_major_works/meghanew.html

2http://gretil.sub.uni-goettingen.de/gretil/1_sanskr/5_poetry/2_kavya/
kmeghdpu.htm

Zhttps://sa.wikisource.org/s/7xr

22https://sa.wikisource.org/s/7up

Bhttps://sa.wikisource.org/s/7xq

https://sa.wikisource.org/s/1c5
https://sanskritdocuments.org/doc_z_misc_major_works/meghanew.html
http://gretil.sub.uni-goettingen.de/gretil/1_sanskr/5_poetry/2_kavya/kmeghdpu.htm
http://gretil.sub.uni-goettingen.de/gretil/1_sanskr/5_poetry/2_kavya/kmeghdpu.htm
https://sa.wikisource.org/s/7xr
https://sa.wikisource.org/s/7up
https://sa.wikisource.org/s/7xq

144

* GO: Google Drive OCR on a synthetically generated PDF

» TO: Tesseract OCR on a synthetically generated PDF

We evaluate our Chandojiianam system as well as those by [Rajagopalan, 2020]
and [Neill, 2023] on each version of the corpora. We evaluate the ability of these
systems to identify the chanda of the verse in the presence of errors. Table 5.3 illus-
trates the result of this evaluation. Chandojiianam was able to identify the correct
meter from the erroneous text in 98.2% of the cases, performing better than the
systems by [Rajagopalan, 2020] (91.9%) and [Neill, 2023] (80.3%). Corpora, code and

results of the experiments are made available with the source code.

5.3.3 Error Analysis

We now analyse the errors in a more detailed manner.
Despite the Wikisource version being prepared through manual correction of
OCR, Chandojiianam was still able to detect 2 errors from Meghadata. The errors are

described below:

Line: #ei&ld SRl Udd Udd d (Pada 3, Sloka 1.23)

° SuggeStion: [[['ET" 'a" 'é"’ '-q.-']i ['a;'! '@" 'Q:[‘" 'g" '?" 'qﬁ']i [’q') 'éli 'a']J [’q') 'r(g)[L]"
], [0

« Description: The error is due to the incorrect word gdd. It is likely that this

was due to an oversight by the curator. It can be seen that the system correctly

points to the location where a change is required.

« Line: AAAHURIFHIAETdGANHHATY (Pada 3, Sloka 2.53)

° Suggestion: [[['ml’ lﬁl’ la—l-l, lql’ lq-l’ l%l, la-l’ 'E’, 'QT" lé-l’ 'd(w)’, |a-|, lgl’ |ﬁl’ |ﬁl, |-£fl’
v-q-l-v’ 'ﬁ']]]

» Description: The error is due to an extra letter present in this line, where an ex-

trad appears in the sandhi of words F{Tei: and g2, resulting in FeTiedaga o

145

Table 5.3: Error tolerance of meter identification systems. (Versions are WS: Wikisource,
GO: Google OCR, TO: Tesseract OCR, SD: sanskritdocuments.org, GR: GRETIL.) Chandojiianam
is able to detect correct chanda from erroneous verses 98.2% of the times.

Meghadiita Santavilasa Ramaraksa | Rajendrakarnapiira Total
SD GR WS GO TO |WS GO TO |WS GO TO | WS GO TO
Number of Verses 117 111 123 123 123 | 36 36 36 | 39 39 39| 72 72 72 1038
Unique Chanda 1 1 1 1 112 12 12| 9 9 9| 4 4 4 17

31 77|13 16 31

Erroneous Verses |20 79 2
Correct [Neill, 2023] 20 79 2 30 66 11 13 14

2

2

4 13|12 26 71 | 39
2 912 24 36 |318(30.3%)
2
3

Meters [Rajagopalan, 2020] | 19 79 30 75 12 15 24
Identified Chandojfianam 20 79 31 77 |13 16 29

9 |12 26 58 364 (91.9%)
9 |12 26 71 389 (98.2%)

[

instead of @Qﬁﬁ?&ﬁf‘ﬁ:. The system is able to identify the error, and point out
that a syllable needs to be deleted. However, we can see that the system points
to an incorrect syllable & to be deleted. This can be explained from the fact
that both & and d are laghu letters, and deletion of either letter results in the
correct metrical signature. So, it is impossible for a meter identification based
system to correctly say which character is to be deleted without any notion of
semantic consideration. Such type of semantic error correction is out-of-scope

as of yet.

Majority of the ‘errors’ in GRETIL stem from the presence of a whitespace in the
text at the joining point of sandhi. For example, the text ﬂﬂﬁmﬂ is written as two
words (ﬁ“EIT[Gm), which if considered as is, would make the second syllable of
the phrase ¥H (guru) instead of ¥ (laghu). Despite not being linguistic errors, from the
point of view of Chandahsastra, they may change the number of syllables in a pada
and subsequently result in the change or loss of the meter. Such errors can be fixed
by ignoring the spaces while computing the metrical signature.

It is important to remember that the errors detected are only the errors reported
by the Chandojiiagnam system. Errors that do not result in the breaking of metrical
pattern are impossible to be corrected by metrical analysis. It is interesting to note
that the fuzzy matching performs better for Google OCR than Tesseract OCR. It can
be explained as follows. As the Google OCR system performs better and makes fewer
errors per line, the possible deviations are fewer. This results in less false positives.

On the contrary, if the OCR system makes numerous errors, the Ig-signature is farther

146

away from the actual Ig-signature and, therefore, ‘the closest match’ of the erroneous
lg-signature might also be erroneous.

Finally, it can be seen that although the meter identification can be a useful tool
for detection of errors in the Sanskrit text, there are several other factors that affect

the error rate of such a system.

5.4 Summary

In this chapter, we described a Sanskrit meter identification tool that adds many
user-friendly features and focuses on tolerance towards erroneous text as well as
correction of such text. The features such as meter identification from images are
useful for Sanskrit enthusiasts without much programming background. Bulk anal-
ysis of text files is a useful aid for digitization of Sanskrit texts using the methodology
of post-OCR manual correction.

The Chandojiianam system is accessible online athttps://sanskrit.iitk.ac.
in/jnanasangraha/chanda/ and the source codeisavailableathttps://github.

com/hrishikeshrt/chanda/.

https://sanskrit.iitk.ac.in/jnanasangraha/chanda/
https://sanskrit.iitk.ac.in/jnanasangraha/chanda/
https://github.com/hrishikeshrt/chanda/
https://github.com/hrishikeshrt/chanda/

Chapter 6

Miscellaneous Computational Tools

for Sanskrit

In this chapter, we delve into a diverse collection of computational tools, web in-
terfaces, and Python libraries designed to enhance the processing and analysis of
Sanskrit. These tools serve a dual purpose, catering to both the general public with
limited Sanskrit or programming knowledge and researchers in the field of Natu-
ral Language Processing (NLP). The web interfaces provide user-friendly access to
linguistic resources and functionalities, enabling a wider audience to explore and
interact with Sanskrit texts. On the other hand, the Python libraries offer a seam-
less integration of state-of-the-art tools into NLP projects, accelerating research and
development in the field. Through an exploration of these tools, we aim to showcase
their capabilities, usability, and their valuable contributions to advancing Sanskrit

language processing and NLP research.

6.1 Jianasangrahah: Computational Interfaces

Jianasangrahah is a collection of several web-based computational applications re-
lated to the Sanskrit language. The aim is to highlight the features of Sanskrit lan-
guage in a way that is approachable for an enthusiastic user, even if she has a limited

Sanskrit background. Jianasangrahah is available at https://sanskrit.iitk.ac.

https://sanskrit.iitk.ac.in/jnanasangraha/

148

in/jnanasangraha/. The applications part of Jianasangrahah are described in the

following sections.

6.1.1 Sankhyapaddhatih

In the ancient India, it was a common practice to represent numeric values using
letters, syllables or words from a natural language. The primary reason to use such
systems is, ease of remembrance of numbers. We present a user-friendly web-based
interface, Sankhyapaddhatih, which implements three such ancient Indian numeral
systems, Katapayadi Sankhya, Aryabhatiya Sankhya and Bhatasankhya. The former
two are alpha-syllabic numeral systems, while the latter is a number notation that
uses ordinary words having implication of numeral values.

The central idea of an alpha-syllabic systems is that numeric values of the syl-
lables are defined based on the constituent consonants and vowels. Usually, more
than one syllable is assigned the same numerical value, however, every syllable has
a unique numerical value, i.e. a many-to-one mapping of syllables to numbers. As a
result, there is a unique value associated with a valid word or a phrase in a system,
but there might be many valid representations of a number in the language.

The core interface for each of the system consists of an encoding interface to en-
code numeric values into a valid text representation a decoding interface to decode
any valid text representation into the corresponding numeric value.

The Sankhyapaddhatih system is available at https://sanskrit.iitk.ac.in/

jnanasangraha/sankhya/.

6.1.1.1 Katapayadi Sankhya

The Katapayadi system of encoding numbers as words by substituting each digit by a
character was developed in ancient India. Each of the letters, & (k), < (t), 9 (p) and &
(y), is assigned the number 1. The subsequent characters are assigned the numbers
2, and so on, thus giving rise to the term Katapayadi, which signifies that k’, ‘t’, ‘p’,

and ‘y’ are the first characters of this sequence. Multiple characters can be mapped

https://sanskrit.iitk.ac.in/jnanasangraha/
https://sanskrit.iitk.ac.in/jnanasangraha/
https://sanskrit.iitk.ac.in/jnanasangraha/sankhya/
https://sanskrit.iitk.ac.in/jnanasangraha/sankhya/

149

S -
Katapayadi Sankhya

Sankhya Home About Encode Decode Upload Help Examples

Select corpora

HATUH

~

HETHRAH,

L

TayHIET:
AAgRTIaH,
Preferred number of words

Small v

Encode number

£y

15081947

Katapayadi Encodings
AU T AT
gdur= fg Femsen

Decode text

T g AcET

Katapayadi Number

15081947
Split g 3 9@ 9 q 4 g @ w9 g @
Relevant q g 4 g g 9 H g
Numbers 7 4 9 1 8 0 5 1

Figure 6.1: Sankhyapaddhatih: Katapayadi Encoding and Decoding

150

to the same number, however there is only one number for each character. Thus,
the system allows a number to be represented in multiple ways. A famous exam-
ple of the use of this system is “HEFfGFAGSHIUIAYNGT T TG Wl in Sadratnamala
of Sankaravarma. In the Katapayadi system, this evaluates to 314159265358979324,

denoting the value of 7 up to 17 decimals.

While decoding a text representation to the corresponding numerical value is
straightforward, as each character represents a single digit, encoding poses chal-
lenges due to the possibility of multiple combinations. To address this, we employ
a data-driven approach that leverages multiple Sanskrit corpora. We decode all the
words in these corpora and store them in an inverted index. This index includes not
only single words but also the corresponding decoded numbers for bi-grams and
tri-grams.

When we need to encode a number, we first search the inverted index for a di-
rect match. If no match is found, we divide the number into smaller parts and search
for matches for each constituent part. The encoded words we retrieve are guaran-
teed to be grammatically correct since they are sourced from actual Sanskrit texts.
However, it is important to note that the resulting combination of words may not
always carry meaningful semantic significance since they are formed by arbitrary

word combinations.

Figure 6.1 shows the encoding and decoding capabilities of Katapayadi system.

6.1.1.2 Aryabhatiya Sankhya

The Aryabhatiya numerical system was developed by the Indian mathematician and
astronomer Aryabhata. This system is described in the first chapter called Gitika
Padam of his work Aryabhatiya. In this system, each syllable formed by a combina-
tion of consonant and vowel in Sanskrit phonology is assigned a numerical value in
a systematic manner. Vowels are assigned values of even powers of ten, for exam-
ple the vowel 37 (a) is given the value 10° = 1, the vowel 3 (i) is assigned the value

102 = 100 and so on, with 37 (au) holding the largest value of 10'®. The system does

151

Bhatasankhya

Sankhya Home About Encode Decode Help List Examples
Encode number Decode text
712 2 ata:

Bhatasankhya Encodings Bhatasankhya Numbers
JEPNIN S, 712

HRITS=: Decode text

q:q-f%]-l-: NELI-UH

ardea

e T

Bhatasankhya Numbers

712

Figure 6.2: Sankhyapaddhatih: Bhatasankhya Encoding and Decoding

not differentiate between short and long vowels, so the pairs of vowels 3 (a) and 3T
(@), s (@) and g (1), and so on have same values. On the other hand, the consonants &
(k) through #H (m) are assigned values from 1 to 25 with the remaining consonants I

(y) to & (h) are given values 30, 40, .. ., 100.

The encoding and decoding processes in the Aryabhatiya Sankhya system are rel-
atively straightforward, owing to its strong connection with the decimal system. To
assist with the manipulation of Sanskrit alphabets (varna), we utilize the Python li-

brary sanskrit-text, which is further described in Section 6.3.3.

152

6.1.1.3 Bhitasankhya

The Bhatasankhya system is a method of expressing numbers through the use of com-
mon words that inherently carry numerical connotations. For instance, the word
Veda symbolizes the number 4 as there are four primary Veda. Similarly, words
like rtu, ripu, rasa, darsana, and others can represent the numerical value 6, as these
words are associated with the number 6. It is important to note that sometimes a
single word may have multiple numbers naturally linked to it. For instance, rasa sig-
nifies the number 6 (sadrasah) when considered in the context of taste in Ayurveda,
whereas in the domain of Natyasastra, it signifies the number 9 (navarasah). Unlike
the previous two systems, the Bhaitasankhya system operates in a many-to-many fash-
ion, where multiple numbers can be associated with a single word. However, it is

important to note that such exceptions are relatively infrequent.

To facilitate the encoding and decoding operations in the Bhatasankhya system,
we maintain a list of words along with their corresponding numerical associations.
For decoding text, we break down the input text into constituent words with the help
of the Sanskrit Sandhi and Compound Splitter [Hellwig and Nehrdich, 2018]. These
words are then searched in the maintained index for their numerical representa-

tions.

When encoding numbers, we begin by dividing the input number into valid®
groups of digits, giving precedence to larger digit groups. Next, we search for words
associated with each digit group and construct a samasa (compound word). To facil-
itate the process of combining the constituent words of the samasa, we utilize the
Python package sandhi® to perform sandhi (combination) between the individual

words.

Figure 6.2 shows the encoding and decoding interface of Bhatasankhya system.

INumber is considered valid if it has a word associated with it.
Zhttps://pypi.org/project/sandhi/

https://pypi.org/project/sandhi/

153

Varnajianam

Home About Pratyahara Viccheda Uccarana Frequency Help

Input text

qHI=
Get Viccheda

Varna Viccheda

T+ T+ A+ T+ A+ T+ + T+

© 2020-2022, Hrishikesh Terdalkar.

Figure 6.3: Varnajiianam: Splitting varnas (varnavicchedah)

6.1.2 Varnajfianam

Varna (d97) is a phonetic unit of Sanskrit language. The Varnajhanam system consists
of utility functions related to varna information and manipulation. These include

the following utilities,

1. Pratyahara Manipulation: Formation and resolution of Pratyahara, which cor-

respond to grouping of several letters in small groups in Sanskrit grammar.
2. Varna Viccheda: Splitting a Sanskrit word into its component alphabets (varna).

3. Uccarana Information: Information about the pronunciation aspects of varna,
including uccarana sthana (place of articulation) and prayatna (effort or inten-

sity of pronunciation).

4. Frequency Calculator: Calculate the frequency of the varna as well their pro-

154

Input text
T
Varpa Sthana Abhyantara Bahya
4 et SUEgE: GaR: ATE: °IY: I T
a1 HUS: farga: HAR: A1&: ©1IY: (U Jar: ¥
q afiet A1 WE: HAR: A1E: 1IY: AT g
a HUS: G HaR: F1&: °I: 3eUyTon: Jar: I

FHUS: frga: HETHTOT:
Figure 6.4: Varnajiianam: Pronunciation information Uccaranasthanayatna
nunciation classes from Sanskrit text.

Figures 6.3 and 6.4 showcase the interface for splitting varna and the interface for
displaying pronunciation information. The systemis availableathttps://sanskrit.

iitk.ac.in/jnanasangraha/varna/.

6.2 Vaiyyakaranah: A Sanskrit Grammar Bot for Tele-
gram

Rise of social media opens novel opportunities of learning. Telegram? is an instant
messaging service available as a cross-platform, freemium software. Telegram bots
are instances of Telegram clients that are capable of performing actions in response
to various user actions. Vaiyyakaranah is a telegram bot aimed towards helping the
learners of Sanskrit grammar (vyakarana).

Vaiyyakaranah is made using Telethon*, a Telegram client library in Python 3.
It makes use of data (Dhatupathah) from https://ashtadhyayi.com for conjuga-

tions. The bot also uses some of the state-of-the-art Sanskrit computational linguistic

%https://telegram.oxrg/
*https://docs.telethon.dev/en/latest/

https://sanskrit.iitk.ac.in/jnanasangraha/varna/
https://sanskrit.iitk.ac.in/jnanasangraha/varna/
https://ashtadhyayi.com
https://telegram.org/
https://docs.telethon.dev/en/latest/

155

ATTeRvOT
N bot : < bot
R
m%qm_ aa‘
N —————

TreT e, e
FY ?«_ﬂ'qﬂ - /sr_tad_n =g P
------ T . 1; 3a1, fovgm; dfogm,
— \ ::::::: s==== ========
&4 3fag - /sr_tad_m o ===Sz=5 =====E= }
Bt o H%mm;;:: hd get gem

' ‘W-g ‘\ I i el qEr
---------- 9 JETTHITH, 3
mﬁfcrﬂ-em — = T qa??}r .

' - d_f ; . :
?Fq?:ﬂ'qa /sr_tad_ o ! q 3

& :::::i: s==== ========

W8T GehererH, —
| 2 9 | .

Figure 6.5: Stem Finder and Declension Generator

tools. The Heritage Platform [Goyal et al., 2012] is used for tasks related to declen-
sions. Sanskrit Sandhi and Compound Splitter [Hellwig and Nehrdich, 2018] is used
for the word segmentation task. The user of the bot may type a set of provided key-
words as commands followed by the appropriate input text in their Telegram client
to obtain the output.

The salient features of the bot are:

+ Stem finder (Pratipadikam)
The keyword ‘\shabda’ can be used, followed by a word form (subanta) to ob-

tain the stem (pratipadikam) and morphological information.

* Declension generation (Subantah)

156

=reRvoT: '

< bt < ?:nar{w
dhatu &R 4,45 — —

uTg: - P @R: - $PoL g‘":"_“qﬁ‘ e -
T S o - Fean: aref: - ot
1 - g aref: - ot Meaning - to do, to act, to make
Meaning - to do, to act, to make aﬁzg-saﬂ? (REIEH) HAAGRY: YehaE
PRI (REHT) TR G- wv g3fag - /dr_08_0010

w4 g3faqg - /dr_08_0010 /dr_08_0010 54, »

H1d 22:49 v/ F (§P91), A, to do, to act, to make
AT, ITIUEH,

uTg: - ®R: - 5P

T - A ueH- FCHHR: (REUEH)

IHUH, B e
¥ - Geptan: aref: - ot . 0. . &

Meaning - to do, to act, to make

FCHPR: (TREAUEH) TUHYSY: Thaa-H,
&4 igg - /dr_08_0010

/dhatu &R 5,40,

BIHDR: (REUSH)
oY - : e -
TR v L BW
& - TepHh: 31ef: - ot e
Meaning - to do, to act, to make T. FREY e SRS
FECADR: (REUSH) UUHAYEY: Yehaa-H, . FRERY wREw FRey
---------- 3 FRE FRegE: wRem:
2 0 @ 2 9

Figure 6.6: Root Finder and Conjugation Generator

Upon searching a word form, the bot also provides an option to show all mor-

phological forms (declensions) of the provided word.

* Root finder (Dhatuh)
The keyword ‘\dhatu’ can be used, followed by a verb form (tinanta) to obtain

the root (dhatu) and morphological information.

» Conjugation generation (Tinantah)
Upon searching a verb form, the bot also provides and option to display all

morphological forms (conjugations) of the provided verb.

» Word segmentation(Sandhisamasau)

The keyword ‘\vigraha’ can be used, followed by Sanskrit text can be pro-

157

vided to obtain the word segmentation (splitting both sandhi and samasa).

Figure 6.5 and Figure 6.6 showcase the diverse capabilities of Vaiyyakaranah.
A video demo is available at https://sanskrit.iitk.ac.in/vaiyyaakarana/.
The bot can be accessed at https://t.me/vyakarana_bot. The source code can

be found at https://github.com/hrishikeshrt/vaiyyakarana/s.

6.3 Python Libraries

We have developed a set of Python packages available on the Python Package In-
dex (PyPI®) to facilitate NLP researchers in working with Sanskrit text and corpora.
These packages can be conveniently installed using the ‘pip install’ command.

In the following sections, we will provide a description of each package.

6.3.1 PyCDSL: A Programmatic Interface to Cologne Digital San-

skrit Dictionaries

PyCDSL is a Python library that provides programmer friendly interface to Cologne
Digital Sanskrit Dictionaries (CDSD) [cds, 2022]. The library serves as a corpus man-
agement tool to download, update and access dictionaries from CDSD. The tool pro-
vides a command line interface for ease of search and a programmable interface for
using CDSD in computational linguistic projects written in Python 3.

The command line interface is provided in two modes (1) a console command
(cdsl) and (2) an interactive REPL’ interface. Both modes come with a rich search
functionality. Users may search by key (a dictionary entry) or value (meaning pro-
vided in the dictionary) or both. The search can be performed on multiple dictio-
naries at the same time. The interactive REPL mode can be triggered by passing
option ‘-1’ to the console command ‘cds1’. Once in this mode, a user may simply

input a term to perform search. Search related settings can also be changed in this

5Please refer to INSTALL .md for installation instructions.
Shttps://pypi.oxg/
"https://en.wikipedia.org/wiki/Read-eval-print_loop

https://sanskrit.iitk.ac.in/vaiyyaakarana/
https://t.me/vyakarana_bot
https://github.com/hrishikeshrt/vaiyyakarana/
https://pypi.org/
https://en.wikipedia.org/wiki/Read-eval-print_loop

158

Using Console Interface of PyCDSL

Help to the Console Interface:

usage: cdsl [-h] [-1] [-s SEARCH] [-p PATH] [-d DICTS [DICTS ...]]
-sm SEARCH_MODE] [-is INPUT_SCHEME] [-os OUTPUT_SCHEME]

-hT HISTORY_FILE] [-sc STARTUP_SCRIPT]

Installation ~ul [-dbg] [-v]
B Usage Access dictionaries from Cologne Digital Sanskrit Lexicon (CDSL)

Using PyCDSL in a Project optional arguments:
-h, --help show this help message and exit

Using Console Interface of PyCDSL -1, --interactive start in an interactive REPL mode
-5 SEARCH, --search SEARCH

Using REPL Interface of PyCDSL search pattern (ignored if "--interactive mode is set)

. -p PATH, --path PATH path to installation
e AR AR e ~d DICTS [DICTS ...], --dicts DICTS [DICTS ...]
REPL Session Example dictionary 1d(s)

-sm SEARCH_MODE, --search-mode SEARCH_MODE
search mode

-1s INPUT_SCHEME, --input-scheme INPUT_SCHEME
input transliteration scheme

-0s OUTPUT_SCHEME, --output-scheme OUTPUT_SCHEME
output transliteration scheme

History -hf HISTORY FILE, --history-file HISTORY FILE

: path to the history file

-sc STARTUP_SCRIPT, --startup-script STARTUP_SCRIPT
path to the startup script

-u, --update update specified dictionaries
-dbg, --debug turn debug mode on
-v, --version show version and exit

Common Usage:

$ cdsl -d MW AP9D -s FiEI

Note: Arguments for specifying installation path, dictionary IDs, input and output transliteration
schemes are valid for both interactive REPL shell and non-interactive console command.

Figure 6.7: Usage Instructions for CLI

mode. The library also comes with extensive transliteration support powered by
Python library indic-transliteration®. The input can be provided in any of the sup-
ported schemes and the results can be exported in a scheme of choice as well. The

results can be copied to clipboard (powered by Pyperclip®)

Every dictionary uses specific conventions in the meaning (value) of the dictio-
nary entries (key). The library can be extended with custom parsers to parse the

entries in the dictionaries in a custom manner.

Figure 6.7 shows a part of the documentation detailing usage instructions for the
console command. The detailed documentation can be found at https://pycdsl.
readthedocs.io/en/latest/. The library is available at https://pypi.oxrg/
project/PyCDSL/ and can be installed using the command, pip install PyCDSL.

The source code can be found at https://github.com/hrishikeshrt/PyCDSL/.

8https://github.com/indic-transliteration/
*https://pypi.org/project/pyperclip/

https://pycdsl.readthedocs.io/en/latest/
https://pycdsl.readthedocs.io/en/latest/
https://pypi.org/project/PyCDSL/
https://pypi.org/project/PyCDSL/
https://github.com/hrishikeshrt/PyCDSL/
https://github.com/indic-transliteration/
https://pypi.org/project/pyperclip/

159

6.3.2 Heritage.py: Python Interface to The Sanskrit Heritage Site

Heritage.py is a Python package that serves as an interface to The Sanskrit Heritage
Site [Goyal et al., 2012]. It makes a number of features offered by the Heritage Plat-
form available to use in Python projects for working with Sanskrit. The features
include morphological analysis, sandhi formation, declensions, and conjugations.

Heritage.py offers two distinct modes of operation:

* Web Mirror Mode: In this mode, the package utilizes a compatible web mir-
ror of The Heritage Platform (i.e., https://sanskrit.inria.fr/index.en.
html). This mode does not necessitate any installation steps but relies on HTTP

requests for each task, which may introduce a slight delay in obtaining results.

* Local Installation Mode: To leverage the full potential of Heritage.py with
enhanced performance, a local installation!® of The Heritage Platform is re-
quired. This mode significantly accelerates result acquisition by eliminating

the need for frequent HTTP requests.

The detailed documentationis availableathttps://heritage-py.readthedocs.
io/en/latest/. The Python package is available on PyPI at https://pypi.oxrg/
project/heritage/ and can be installed using ‘pip install heritage’ on the
terminal. The source code is available at https://github.com/hrishikeshrt/

heritage.

6.3.3 sanskrit-text: Sanskrit Text Utility Functions

sanskrit-text is a Python package designed to provide various utility functions for
working with Sanskrit text in the Devanagari script. It offers a range of functionali-
ties that assist developers in processing Sanskrit text and corpora.

The library’s capabilities include:

« Syllabification: The library provides functions to syllabify Sanskrit words, split-

ting them into their constituent syllables.

19The Heritage Platform Installation Instructions: https://sanskrit.inria.fr/manual.html#installation

https://sanskrit.inria.fr/index.en.html
https://sanskrit.inria.fr/index.en.html
https://heritage-py.readthedocs.io/en/latest/
https://heritage-py.readthedocs.io/en/latest/
https://pypi.org/project/heritage/
https://pypi.org/project/heritage/
https://github.com/hrishikeshrt/heritage
https://github.com/hrishikeshrt/heritage

160

* Varna Viccheda: This feature allows one to split Sanskrit words into individual

phonetic units (varna)

* Pratyahara Encoding-Decoding: Pratyahara, in the context of Sanskrit grammar,
are shortened representations of a larger set of characters. The library sup-

ports encoding and decoding of pratyaharas.

* Uccarana Sthana Yatna Utility: This utility assists in identifying the information

about pronunciation of sounds in a Sanskrit text.

* The library offers additional functions for tasks such as cleaning text, identi-
fying lines from a Sanskrit text, manipulating matras (diacritical marks), and

more.

The library serves as a backend for Varnajianam interface described in Section 6.1.2.
It provides a comprehensive set of functions to aid in the character or syllable level
processing of Sanskrit text.

Its documentation, available at https://sanskrit-text.readthedocs.io/
en/latest/, offers detailed information on each function and its usage. The pack-
age itself is available on PyPI at https://pypi.org/project/sanskrit-text/
and can be installed using the command, pip install sanskrit-text,inthe con-
sole. The source code for sanskrit-text library is available at https://github.com/

hrishikeshrt/sanskrit-text.

6.4 Summary

We have showcased a wide range of computational tools, web interfaces, and Python
libraries that support various tasks related to Sanskrit language understanding and
exploration. These tools serve multiple purposes, catering to both general users with
limited Sanskrit or programming knowledge, as well as Sanskrit NLP researchers

and developers.

https://sanskrit-text.readthedocs.io/en/latest/
https://sanskrit-text.readthedocs.io/en/latest/
https://pypi.org/project/sanskrit-text/
https://github.com/hrishikeshrt/sanskrit-text
https://github.com/hrishikeshrt/sanskrit-text

Chapter 7

Conclusions

In this thesis, we set out to construct knowledge-based systems in Sanskrit for the
advancement of research in Sanskrit NLP as well as for promoting the dissemina-
tion of knowledge for the benefit of researchers, scholars, and the wider commu-
nity. We explored the development of knowledge-based systems for Sanskrit, fo-
cusing on the construction of a question answering (QA) system and the utilization
of a knowledge graph. We successfully developed a QA system that leverages the
knowledge graph constructed automatically from Sanskrit texts, in order to answer
natural language queries posed by the users. Additionally, we designed and imple-
mented task-specific annotation tools to facilitate the construction and refinement
of the knowledge graph. These annotation tools proved to be essential in annotat-
ing Sanskrit text corpora, enabling the semantic extraction of knowledge and the
construction of a comprehensive knowledge graph. In this process we also created
several useful web-interfaces, tools and software libraries to cater to the needs of

Sanskrit researchers as well as enthusiasts.

We will now summarize the key contributions and discuss the scope for future

work as well as the research directions enabled by this thesis.

162

7.1 Key Contributions

The significant contributions made by this thesis to the field of knowledge-based

systems for Sanskrit are the following.

» Wedeveloped a framework to automatically construct a knowledge graph through
processing of Sanskrit texts. We employed this knowledge graph in a domain-
specific question answering system to answer questions based on human kin-

ship relationships.

» We discovered several limitations in the automatic text processing of Sanskrit
corpora and identified the need for manual annotation for higher level seman-

tic tasks.

* Wedesigned and implemented two intuitive and user-friendly annotation tools,
Sangrahaka and Antarlekhaka, to enable distributed manual annotation of
Sanskrit texts. Both the tools have received mostly positive reviews in a subjec-

tive evaluation and outperform other annotation tools on an objective scale.

» Sangrahaka is a task-specific annotation tool that streamlines the process of
constructing and refining the Sanskrit knowledge graph. It has been used
in the semantic annotation of Bhavaprakasanighantu, an Ayurveda text and a
knowledge graph has been constructed on three chapters: Dhanyavarga, Sakavarga
and Mamsavarga from Bhavaprakasanighantu. The knowledge graph contains
more than 1600 nodes and more than 1700 relationships. The system, titled

Ayurjianam, is available at https://sanskrit.iitk.ac.in/ayurveda/.

» Antarlekhaka is general purpose annotation tool for the annotation towards a
comprehensive set of NLP tasks. It introduces the concept of sequential anno-
tation wherein an annotator completes a stipulated set of tasks for a small unit
of text (such as a verse from a poetry corpus) before moving on to the next unit.

The tool supports eight generic categories of annotation tasks which cover a

https://sanskrit.iitk.ac.in/ayurveda/

163

much larger set of NLP tasks. These categories are, sentence boundary de-
tection, canonical word ordering, token text annotation, token classification,
token graph, token connections, sentence classification and sentence graph.
The two tasks, sentence boundary detection and canonical word ordering, are
not supported by any of the other extant annotation tools. Each category has
a special annotation interface that makes it easy for annotators to capture the
relevant information for each task. The tool is being used for a large-scale task

of the annotation of a voluminous Sanskrit text, Valmiki Ramayana.

* We created, Chandojiianam, a system for identification and utilization of San-
skrit meters that can identify meters from Sanskrit text as well asimages through
use of state-of-the-art OCR engines. Through its ability to provide approximate
and close matches in the absence of direct matches we demonstrated the util-
ity of Sanskrit prosody in the digitization of Sanskrit corpora through locating

the errors in Sanskrit text based on deviations from known metrical patterns.

* We also presented a collection of web-interfaces, tools, and software libraries
related to computational aspects of Sanskrit. These include, Jianasangrahah,
a collection of web-interfaces showcasing interesting applications of Sanskrit,
Vaiyyakaranah, a Telegram bot to aid the learners of Sanskrit grammar and
several Python libraries such as PyCDSL, Heritage.py and sanskrit-text which
enable Sanskrit programmers to deal with Sanskrit texts in a more effective

manner.

7.2 Future Work

While this thesis has made significant contributions through the development of
knowledge-based systems for Sanskrit, there are several areas that offer avenues

for future research and development.

* Completion of Annotation Tasks: The completion of ongoing annotation tasks

164

described in this thesis can lead to construction of more competent QA sys-

tems.

Expansion of the Knowledge Graph: The knowledge graphs constructed in
this thesis serve as a foundation, but the scope of the KGs can be further ex-

panded and enriched with additional Sanskrit texts and resources.

Improvement of Annotation Tools: The task-specific annotation tools devel-
oped in this thesis can be further refined and enhanced to improve the ef-
ficiency and accuracy of the annotation process. Integration with advanced
natural language processing techniques, state-of-the-art tools, and machine

learning algorithms can automate and streamline certain annotation tasks.

Semantic Search and Reasoning: While the developed QA system provides
accurate answers to user queries, incorporating semantic search and reason-
ing capabilities can enhance the system’s ability to understand complex queries

and provide more sophisticated answers.

Correction of Digital Corpora: We explored the scope of Sanskrit prosody in
the correction of digital Sanskrit corpora. The system is capable of identifying
locations where errors may be present. Use of semantic resources, dictionar-
ies, language models in combination with the metrical analysis may result in

a more robust solution for providing suggestions in case of errors.

Publications

[1]

[2]

[3]

[4]

[5]

[6]

Hrishikesh Terdalkar and Arnab Bhattacharya. Framework for question-
answering in Sanskrit through automated construction of knowledge graphs. In
Proceedings of the 6th International Sanskrit Computational Linguistics Sympo-
sium, pages 97-116, IIT Kharagpur, India, October 2019. Association for Compu-
tational Linguistics.

Hrishikesh Terdalkar and Arnab Bhattacharya. Sangrahaka: A tool for anno-
tating and querying knowledge graphs. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2021, page 1520-1524, New York,
NY, USA, 2021. Association for Computing Machinery.

Hrishikesh Terdalkar, Arnab Bhattacharya, Madhulika Dubey, S Ramamurthy,
and Bhavna Naneria Singh. Semantic annotation and querying framework
based on semi-structured Ayurvedic text. In Proceedings of the Computational
Sanskrit & Digital Humanities: Selected papers presented at the 18th World San-
skrit Conference, pages 155-173, Canberra, Australia, January 2023. Association
for Computational Linguistics.

Jivnesh Sandhan, Ashish Gupta, Hrishikesh Terdalkar, Tushar Sandhan, Su-
vendu Samanta, Laxmidhar Behera, and Pawan Goyal. A novel multi-task learn-
ing approach for context-sensitive compound type identification in Sanskrit. In
Proceedings of the 29th International Conference on Computational Linguistics,
pages 4071-4083, Gyeongju, Republic of Korea, October 2022. International Com-
mittee on Computational Linguistics.

Hrishikesh Terdalkar and Arnab Bhattacharya. Chandojnanam: A Sanskrit
meter identification and utilization system. In Proceedings of the Computational
Sanskrit & Digital Humanities: Selected papers presented at the 18th World San-
skrit Conference, pages 113-127, Canberra, Australia, January 2023. Association
for Computational Linguistics.

Hrishikesh Terdalkar and Arnab Bhattacharya. Antarlekhaka: A comprehen-
sive tool for multi-task natural language annotation. In Proceedings of the 3rd
Workshop on NLP Open Source Software at the 2023 Conference on Empirical
Methods in Natural Language Processing, NLP-OSS @ EMNLP, Singapore, Decem-
ber 2023. Association for Computational Linguistics.

References

[gre, 2023] (2001-2023). Gottingen Register of Electronic Texts in Indian Lan-
guages. Dataset available from http://gretil.sub.uni-goettingen.de/
gretil.htm.

[bpn, 2016] (2016). Bhavaprakasa of Bhavamisra, volume 1. Chowkhamba Krish-
nadas Academy, Varanasi.

[wik, 2021a] (2021a). Asynchronous JavaScript and XML. https://en.
wikipedia.org/wiki/Ajax_(programming).

[bol, 2021] (2021). Bolt protocol. https://boltprotocol.oxg/.

[boo, 2021] (2021). Bootstrap 4.6. https://getbootstrap.com/docs/4.6/
getting-started/introduction/.

[cyp, 2021] (2021). Cypher query language. https://neo4j.com/developer/
cypher/.

[gun, 2021] (2021). Gunicorn - wsgi server. https://docs.gunicorn.org/en/
stable/.

[jin, 2021] (2021). Jinja - a very fast and expressive template engine. https://
jinja.palletsprojects.com/en/2.11.x/.

[jso, 2021] (2021). Json lines. https://jsonlines.org/.

[ngi, 2021] (2021). NGINX - high performance load balancer, web server and reverse
proxy. https://docs.gunicorn.org/en/stable/.

[wik, 2021b] (2021b). Single-page application. https://en.wikipedia.oxrg/
wiki/Single-page_application.

[sql, 2021] (2021). SQLAlchemy - the python sql toolkit and object relational mapper.
https://www.sqlalchemy.org/.

[val, 2021] (2021). Valmiki ramayana. http://valmikiramayan.pcriot.com/.
[vis, 2021] (2021). vis.js community edition. https://visjs.oxg/.

[cds, 2022] (2022). Cologne Digital Sanskrit Dictionaries. https://www.
sanskrit-lexicon.uni-koeln.de. version 2.0.738, accessed on October 13,
2022.

http://gretil.sub.uni-goettingen.de/gretil.htm
http://gretil.sub.uni-goettingen.de/gretil.htm
https://en.wikipedia.org/wiki/Ajax_(programming)
https://en.wikipedia.org/wiki/Ajax_(programming)
https://boltprotocol.org/
https://getbootstrap.com/docs/4.6/getting-started/introduction/
https://getbootstrap.com/docs/4.6/getting-started/introduction/
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://docs.gunicorn.org/en/stable/
https://docs.gunicorn.org/en/stable/
https://jinja.palletsprojects.com/en/2.11.x/
https://jinja.palletsprojects.com/en/2.11.x/
https://jsonlines.org/
https://docs.gunicorn.org/en/stable/
https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Single-page_application
https://www.sqlalchemy.org/
http://valmikiramayan.pcriot.com/
https://visjs.org/
https://www.sanskrit-lexicon.uni-koeln.de
https://www.sanskrit-lexicon.uni-koeln.de

168

[fir, 2023] (2023). Firebird: The true universal open source database. https://
firebirdsql.oxg/.

[mss, 2023] (2023). Microsoft SQL Server 2019. https://www.microsoft.com/
en-in/sql-server/sql-server-2019.

[mys, 2023] (2023). MySQL. https://dev.mysql.com/.

[ora, 2023] (2023). Oracle SQL Developer. https://www.oracle.com/database/
sqldeveloper/.

[pos, 2023] (2023). PostgreSQL: The World’s Most Advanced Open Source Relational
Database. https://www.postgresql.oxrg/.

[syb, 2023] (2023). Sybase: Sap adaptive server enterprise. https://www.sap.
com/products/technology-platform/sybase-ase.html.

[apa, 2023] (2023). The Apache HTTP Server Project. https://httpd.apache.
org/.

[Auer et al., 2007] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and
Ives, Z. (2007). DBpedia: A nucleus for a web of open data. In The Semantic Web,
pages 722-735.

[Bhargava and Lambek, 1992] Bhargava, M. and Lambek, J. (1992). A production
grammar for Sanskrit kinship terminology. Theoretical Linguistics, 18(1):45-60.

[Bollacker et al., 2008] Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Taylor, J.
(2008). Freebase: A collaboratively created graph database for structuring human
knowledge. In ACM SIGMOD International Conference on Management of data,
pages 1247-1250.

[Bontcheva et al.,, 2013] Bontcheva, K., Cunningham, H., Roberts, I., Roberts, A,
Tablan, V., Aswani, N., and Gorrell, G. (2013). Gate teamware: a web-based,

collaborative text annotation framework. Language Resources and Evaluation,
47(4):1007-1029.

[Burrow, 2001] Burrow, T. (2001). The Sanskrit language. Motilal Banarsidass Publ.

[De Marneffe et al., 2021] De Marneffe, M.-C., Manning, C. D., Nivre, J., and Zeman,
D. (2021). Universal dependencies. Computational linguistics, 47(2):255-308.

[Deo, 2007] Deo, A. S. (2007). The metrical organization of classical sanskrit verse.
Journal of linguistics, 43(1):63-114.

[Diefenbach et al., 2018] Diefenbach, D., Lopez, V., Singh, K., and Maret, P. (2018).
Core techniques of question answering systems over knowledge bases: a survey.
Knowledge and Information systems, 55:529-569.

[Dong et al., 2014] Dong, X., Gabrilovich, E., Heitz, G., Horn, W,, Lao, N., Murphy, K.,
Strohmann, T., Sun, S., and Zhang, W. (2014). Knowledge vault: A web-scale ap-
proach to probabilistic knowledge fusion. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 601-610.

https://firebirdsql.org/
https://firebirdsql.org/
https://www.microsoft.com/en-in/sql-server/sql-server-2019
https://www.microsoft.com/en-in/sql-server/sql-server-2019
https://dev.mysql.com/
https://www.oracle.com/database/sqldeveloper/
https://www.oracle.com/database/sqldeveloper/
https://www.postgresql.org/
https://www.sap.com/products/technology-platform/sybase-ase.html
https://www.sap.com/products/technology-platform/sybase-ase.html
https://httpd.apache.org/
https://httpd.apache.org/

169

[Dutt et al., 1891] Dutt, M. N. et al. (1891). The Ramayana, volume 1. Girish Chandra
Chackravarti.

[Ganguli et al., 1884] Ganguli, K. M. et al. (1884). The Mahabharata. Bharata Press.

[Goyal and Huet, 2016] Goyal, P. and Huet, G. (2016). Design and analysis of a lean
interface for Sanskrit corpus annotation. Journal of Language Modelling, 4(2):145-
182.

[Goyal et al., 2012] Goyal, P, Huet, G., Kulkarni, A., Scharf, P, and Bunker, R. (2012).
A distributed platform for Sanskrit processing. In 24th International Conference
on Computational Linguistics (COLING), pages 1011-1028.

[Grinberg, 2018] Grinberg, M. (2018). Flask web development: developing web appli-
cations with python. ” O’Reilly Media, Inc.”.

[Gutiérrez and Sequeda, 2021] Gutiérrez, C. and Sequeda, J. F. (2021). Knowledge
graphs. Communications of the ACM, 64(3):96-104.

[Haapala, 2014] Haapala, A. (2014). python-Levenshtein. https://pypi.oxrg/
project/python-Levenshtein/. [Online; accessed 2022-04-01].

[Harish and Rangan, 2020] Harish, B. and Rangan, R. K. (2020). A comprehensive
survey on indian regional language processing. SN Applied Sciences, 2(7):1204.

[Hellwig, 2021] Hellwig, O. (2010-2021). The Digital Corpus of Sanskrit (DCS).
Dataset available from https://github.com/0OliverHellwig/sanskrit/
tree/master/dcs/data.

[Hellwig and Nehrdich, 2018] Hellwig, O. and Nehrdich, S. (2018). Sanskrit word
segmentation using character-level recurrent and convolutional neural net-
works. In Conference on Empirical Methods in Natural Language Processing, pages
2754-2763.

[Hickson, 2021] Hickson, I. (2021). Web storage (second edition). W3C recommen-
dation, W3C. https://www.w3.org/TR/2021/SPSD-webstorage-20210128/.

[Hipp, 2022] Hipp, R. D. (2022). SQLite. https://www.sqlite.org/index.html.

[Hirschman and Gaizauskas, 2001] Hirschman, L. and Gaizauskas, R. (2001). Natu-
ral language question answering: the view from here. natural language engineer-
ing, 7(4):275.

[Honnibal et al., 2020] Honnibal, M., Montani, I., Van Landeghem, S., and Boyd, A.
(2020). spaCy: Industrial-strength Natural Language Processing in Python.

[Huet, 2002] Huet, G. (2002). The Zen computational linguistics toolkit: Lexicon
structures and morphology computations using a modular functional program-
ming language. In Tutorial, Language Engineering Conference LEC’2002.

[Huet, 2005] Huet, G. (2005). A functional toolkit for morphological and phonolog-
ical processing, application to a sanskrit tagger. Journal of Functional Program-
ming, 15(4):573-614.

https://pypi.org/project/python-Levenshtein/
https://pypi.org/project/python-Levenshtein/
https://github.com/OliverHellwig/sanskrit/tree/master/dcs/data
https://github.com/OliverHellwig/sanskrit/tree/master/dcs/data
https://www.sqlite.org/index.html

170

[Huet, 2009] Huet, G. (2009). Sanskrit segmentation. South Asian Languages Analysis
Roundtable XXVIII, Denton, Ohio (October 2009).

[Huet, 2020] Huet, G. (2020). Design of a sanskrit reader assistant. ORIENTALES
DANICA FENNICA NORVEGIA SVECIA, 2019(80):376-400.

[Huet and Lankri, 2020] Huet, G. and Lankri, I. (2020). Preliminary design of a san-
skrit corpus manager. Computational Sanskrit & Digital Humanities, page 259.

[Jurafsky, 2000] Jurafsky, D. (2000). Speech & language processing. Pearson Educa-
tion India.

[Jurafsky and Martin, 2008] Jurafsky, D. and Martin, J. H. (2008). Speech and lan-
guage processing: An introduction to speech recognition, computational linguis-
tics and natural language processing. Upper Saddle River, NJ: Prentice Hall.

[Kale, 2011] Kale, M. R. (2011). The Meghaduta of Kalidasa. Motilal Banarsidass.

[Kay, 2007] Kay, A. (2007). Tesseract: an open-source optical character recognition
engine. Linux Journal, 2007(159):2.

[Kiyota et al., 2002] Kiyota, Y., Kurohashi, S., and Kido, F. (2002). “dialog navigator”:
A question answering system based on large text knowledge base. In COLING
2002: The 19th International Conference on Computational Linguistics.

[Krishna et al., 2020a] Krishna, A., Gupta, A., Garasangi, D., Sandhan, J., Satuluri, P,
and Goyal, P. (2020a). Neural approaches for data driven dependency parsing in
sanskrit. arXiv preprint arXiv:2004.08076.

[Krishna et al., 2020b] Krishna, A., Gupta, A., Garasangi, D., Satuluri, P, and Goyal,
P. (2020Db). Keep it surprisingly simple: A simple first order graph based parsing
model for joint morphosyntactic parsing in sanskrit. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
4791-4797.

[Krishna et al., 2021] Krishna, A., Santra, B., Gupta, A., Satuluri, P., and Goyal, P.
(2021). A graph-based framework for structured prediction tasks in sanskrit. Com-
putational Linguistics, 46(4):785-845.

[Krishna et al., 2016] Krishna, A., Santra, B., Satuluri, P.,, Bandaru, S. P, Faldu, B.,
Singh, Y., and Goyal, P. (2016). Word segmentation in sanskrit using path con-
strained random walks. In Proceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical Papers, pages 494-504.

[Krishna et al., 2019] Krishna, A., Sharma, V. D., Santra, B., Chakraborty, A., Satuluri,
P, and Goyal, P. (2019). Poetry to prose conversion in sanskrit as a linearisation
task: A case for low-resource languages. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 1160-1166.

[Kulkarni, 2016] Kulkarni, A. (2016). Samsaadhanii: A sanskrit computational
toolkit. https://sanskrit.uohyd.ac.in/scl/.

https://sanskrit.uohyd.ac.in/scl/

171

[Kulkarni, 2020] Kulkarni, A. (2020). Appropriate dependency tagset for sanskrit
analysis and generation. ORIENTALES DANICA FENNICA NORVEGIA SVECIA,
2019(80):401-425.

[Kulkarni, 2021] Kulkarni, A. (2021). Sanskrit parsing following indian theories of
verbal cognition. Transactions on Asian and Low-Resource Language Information
Processing, 20(2):1-38.

[Kulkarni et al., 2020] Kulkarni, A., Satuluri, P, Panchal, S., Maity, M., and Malvade,
A. (2020). Dependency relations for sanskrit parsing and treebank. In Proceedings
of the 19th International Workshop on Treebanks and Linguistic Theories, pages
135-150.

[Kulkarni et al., 2015] Kulkarni, A., Shukla, P., Satuluri, P., and Shukl, D. (2015). How
free is free word order in sanskrit. The Sanskrit Library, USA, pages 269-304.

[Kulkarni et al., 2019] Kulkarni, A., Vikram, S., and Sriram, K. (2019). Dependency
parser for sanskrit verses. In Proceedings of the 6th International Sanskrit Com-
putational Linguistics Symposium, pages 14-27.

[Kulkarni et al., 2010] Kulkarni, M., Dangarikar, C., Kulkarni, I., Nanda, A., and Bhat-
tacharyya, P. (2010). Introducing Sanskrit WordNet. In 5th Global Wordnet Con-
ference (GWC 2010), pages 287-294.

[Kumar and Lehal, 2016] Kumar, A. and Lehal, G. S. (2016). Automatic text correc-
tion for devanagari ocr. Indian Journal of Science and Technology, 9(45).

[Kurian, 2014] Kurian, C. (2014). A review on the progress of natural language pro-
cessing in india. International Journal of Advances in Engineering & Technology,
7(5):1420-1425.

[Lassila et al., 1998] Lassila, O., Swick, R. R., et al. (1998). Resource Description
Framework (RDF) model and syntax specification.

[Lee, 2022] Lee, M. (2022). pytesseract. https://github.com/madmaze/
pytesseract. [Online; accessed 2022-04-01].

[Macdonell, 1915] Macdonell, A. A. (1915). A history of Sanskrit literature, volume 3.
D. Appleton.

[Malhotra and Babaji, 2020] Malhotra, R. and Babaji, S. D. (2020). Sanskrit non-
translatables: The importance of Sanskritizing English. Manjul Publishing.

[Melnad et al., 2013] Melnad, K. S., Goyal, P,, and Scharf, P. (2013). Meter identifica-
tion of sanskrit verse. The Sanskrit Library, USA.

[Mendelzon and Wood, 1995] Mendelzon, A. O. and Wood, P. T. (1995). Finding regu-
lar simple paths in graph databases. SIAM Journal on Computing, 24(6):1235-1258.

[Mishra, 2007] Mishra, A. (2007). Sanskrit metre recognizer. Formerly available at
http://sanskrit.sai.uni-heidelberg.de/Chanda/HTML.

https://github.com/madmaze/pytesseract
https://github.com/madmaze/pytesseract
http://sanskrit.sai.uni-heidelberg.de/Chanda/HTML

172

[Mitchell et al., 2018] Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P.,, Yang, B,
Betteridge, J., Carlson, A., Dalvi, B., Gardner, M., Kisiel, B., et al. (2018). Never-
ending learning. Communications of the ACM, 61(5):103-115.

[Nair and Kulkarni, 2010] Nair, S. S. and Kulkarni, A. (2010). The knowledge struc-
ture in Amarakosa. In International Sanskrit Computational Linguistics Sympo-
sium, pages 173-189.

[Nakayama et al., 2018] Nakayama, H., Kubo, T., Kamura, J., Taniguchi, Y., and Liang,
X. (2018). doccano: Text annotation tool for human. Software available from
https://github.com/doccano/doccano.

[Neill, 2023] Neill, T. (2023). Skrutable: Another step toward effective Sanskrit meter
identification. In Proceedings of the Computational Sanskrit & Digital Humanities:
Selected papers presented at the 18th World Sanskrit Conference, pages 97-112,
Canberra, Australia (Online mode). Association for Computational Linguistics.

[Neves and Seva, 2021] Neves, M. and Seva, J. (2021). An extensive review of tools
for manual annotation of documents. Briefings in bioinformatics, 22(1):146-163.

[Pujara and Singh, 2018] Pujara, J. and Singh, S. (2018). Mining knowledge graphs
from text. In WSDM, pages 789-790.

[Qietal, 2020] Qi, P, Zhang, Y., Zhang, Y., Bolton, J., and Manning, C. D. (2020).
Stanza: A python natural language processing toolkit for many human languages.
arXiv preprint arXiv:2003.07082.

[Rajagopalan, 2020] Rajagopalan, S. (2020). A user-friendly tool for metrical analysis
of sanskrit verse. Computational Sanskrit & Digital Humanities, page 113.

[Rajan, 2018] Rajan, V. (2018). Aksharamukha. https://github.com/
virtualvinodh/aksharamukha. [Online; accessed 2021-11-03].

[RDFLib, 2017] RDFLib, T. (2017). rdflib. https://github.com/RDFLib/xdflib.
[Online; accessed 2019-05-03].

[Ronacher, 2011] Ronacher, A. (2011). Opening the falsk. URL:
http://mitsuhiko.pocoo.org/flask-pycon-2011.pdf.

[Sandhan et al., 2022] Sandhan, J., Gupta, A., Terdalkar, H., Sandhan, T., Samanta, S.,
Behera, L., and Goyal, P. (2022). A novel multi-task learning approach for context-
sensitive compound type identification in sanskrit. COLING 2022. arXiv.

[Sandhan et al., 2019] Sandhan, J., Krishna, A., Goyal, P, and Behera, L. (2019). Re-
visiting the role of feature engineering for compound type identification in san-
skrit. In Proceedings of the 6th international Sanskrit computational linguistics
symposium, pages 28-44.

[Sandhan et al., 2021] Sandhan, J., Krishna, A., Gupta, A., Behera, L., and Goyal,
P. (2021). A little pretraining goes a long way: A case study on dependency
parsing task for low-resource morphologically rich languages. arXiv preprint
arXiv:2102.06551.

https://github.com/doccano/doccano
https://github.com/virtualvinodh/aksharamukha
https://github.com/virtualvinodh/aksharamukha
https://github.com/RDFLib/rdflib

173

[Sankaran et al., 2013] Sankaran, N., Neelappa, A., and Jawahar, C. (2013). Devana-
gari text recognition: A transcription based formulation. In 2013 12th Interna-
tional Conference on Document Analysis and Recognition, pages 678-682. IEEE.

[Sanskrit programmers, 2021] Sanskrit programmers (2021). Indic-transliteration.
https://github.com/indic-transliteration/. [Online; accessed 2021-11-
18].

[Scharf and Hyman, 2009] Scharf, P. and Hyman, M. (2009). Linguistic Issues in En-
coding Sanskrit. Motilal Banarsidass, Delhi.

[Stenetorp et al.,, 2012] Stenetorp, P., Pyysalo, S., Topi¢, G., Ohta, T., Ananiadou, S.,
and Tsujii, J. (2012). Brat: a web-based tool for nlp-assisted text annotation. In
Proceedings of the Demonstrations at the 13th Conference of the European Chapter
of the Association for Computational Linguistics, pages 102-107.

[Suchanek et al., 2007] Suchanek, F. M., Kasneci, G., and Weikum, G. (2007). YAGO:
A core of semantic knowledge. In 16th International Conference on World Wide
Web, pages 697-706.

[Terdalkar, 2022] Terdalkar, H. (2022). google-drive-ocr. https://github.com/
hrishikeshrt/google_drive_oczr/. [Online; accessed 2022-04-01].

[Terdalkar et al., 2023] Terdalkar, H., AV SD S, M., Agarwal, S., and Bhattacharya,
A. (2023). Vaiyyakaranah: A sanskrit grammar bot for telegram.

[Terdalkar and Bhattacharya, 2019a] Terdalkar, H. and Bhattacharya, A. (2019a).
Framework for question-answering in Sanskrit through automated construction
of knowledge graphs. In Proceedings of the 6th International Sanskrit Computa-
tional Linguistics Symposium, pages 97-116, IIT Kharagpur, India. Association for
Computational Linguistics.

[Terdalkar and Bhattacharya, 2019b] Terdalkar, H. and Bhattacharya, A. (2019b).
Katapayadi system.

[Terdalkar and Bhattacharya, 2021a] Terdalkar, H. and Bhattacharya, A. (2021a).
Sangrahaka: A tool for annotating and querying knowledge graphs. In Proceed-
ings of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2021, page
1520-1524, New York, NY, USA. Association for Computing Machinery.

[Terdalkar and Bhattacharya, 2021b] Terdalkar, H. and Bhattacharya, A. (2021b).
Sangrahaka: A tool for annotating and querying knowledge graphs. https:
//arxiv.org/abs/2107.02782.

[Terdalkar and Bhattacharya, 2022] Terdalkar, H. and Bhattacharya, A. (2022).
Chandojnanam: A sanskrit meter identification and utilization system. WSC 2023.
arXiv.

[Terdalkar and Bhattacharya, 2023a] Terdalkar, H. and Bhattacharya, A. (2023a).
Jianasangrahah: A collection of computational applications related to sanskrit.

https://github.com/indic-transliteration/
https://github.com/hrishikeshrt/google_drive_ocr/
https://github.com/hrishikeshrt/google_drive_ocr/
https://arxiv.org/abs/2107.02782
https://arxiv.org/abs/2107.02782

174

[Terdalkar and Bhattacharya, 2023b] Terdalkar, H. and Bhattacharya, A. (2023b).
Pycdsl: A programmatic interface to cologne digital sanskrit dictionaries.

[Terdalkar et al., 2022] Terdalkar, H., Bhattacharya, A., Dubey, M., S, R., and Singh,
B. N. (2022). Semantic annotation and querying framework based on semi-
structured ayurvedic text. WSC 2023. arXiv.

[Tjong Kim Sang and De Meulder, 2003] Tjong Kim Sang, E. F. and De Meulder, F.
(2003). Introduction to the conll-2003 shared task: language-independent named
entity recognition. In Proceedings of the seventh conference on Natural language
learning at HLT-NAACL 2003-Volume 4, pages 142-147.

[van Gompel, 2014] van Gompel, M. (2014). Folia linguistic annotation tool. https:
//github.com/proycon/flat.

[Van Rossum and Drake, 2009] Van Rossum, G. and Drake, F. L. (2009). Python 3 Ref-
erence Manual. CreateSpace, Scotts Valley, CA.

[Vikram and Kulkarni, 2020] Vikram, S. and Kulkarni, A. (2020). Free word order in
sanskrit and well-nestedness. In Proceedings of the 17th International Conference
on Natural Language Processing (ICON), pages 308-316.

[Vivekananda, 2019] Vivekananda, S. (2019). Complete Works of Swami
Vivekananda. Partha Sinha.

[Voorhees, 1999] Voorhees, E. M. (1999). The trec-8 question answering track report.
In Trec, volume 99, pages 77-82. Citeseer.

[Vrandecic¢, 2012] Vrandecié, D. (2012). Wikidata: A new platform for collaborative
data collection. In Proceedings of the 21st international conference on world wide
web, pages 1063-1064.

[Webber, 2012] Webber, J. (2012). A programmatic introduction to neo4j. In Pro-
ceedings of the 3rd annual conference on Systems, programming, and applications:
software for humanity, pages 217-218.

[Winston, 1984] Winston, P. H. (1984). Artificial Intelligence. Addison-Wesley Long-
man Publishing Co., Inc.

[Wu et al,, 2019] Wu, X., Wu,]., Fu, X,, Li, J., Zhou, P, and Jiang, X. (2019). Automatic
knowledge graph construction: A report on the 2019 ICDM/ICBK contest. In ICDM,
pages 1540-1545.

[Yih et al.,, 2015] Yih, W.-t.,, Chang, M.-W.,, He, X., and Gao, J. (2015). Semantic parsing
via staged query graph generation: Question answering with knowledge base. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1321-1331, Beijing, China. Association for Compu-
tational Linguistics.

[Yimam et al., 2013] Yimam, S. M., Gurevych, I., de Castilho, R. E., and Biemann, C.
(2013). Webanno: A flexible, web-based and visually supported system for dis-
tributed annotations. In Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics: System Demonstrations, pages 1-6.

https://github.com/proycon/flat
https://github.com/proycon/flat

	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Motivation
	Challenges
	Manual Annotation
	Related Work
	Objectives
	Question Answering System for Sanskrit
	Intuitive and Accessible Annotation Tools
	User-Centric Solutions for Sanskrit Awareness and Research

	Contributions
	Significance
	Limitations
	Outline

	Sanskrit Question Answering Framework
	Introduction
	Proposed Framework
	Knowledge Graphs (KG)
	Triplets
	Questions

	Construction of Knowledge Graph
	Pre-Processing of Text
	Identifying Relationship Words
	Identification of Triplets
	Enhancement of Relationships

	Question Answering
	Identifying Triplets
	Enhancing Triplets
	Query Pattern

	Technical Texts
	Structure
	Property Words
	Synonym Śloka Identification
	Identifying Synonymous Nouns

	Experiments and Results
	Datasets
	Knowledge Graph from Rāmāyaṇa and Mahābhārata
	Questions
	Performance

	Analysis of Wrong Answers
	Parsing Errors
	Answering Errors
	Correct Answers despite Wrong Parsing

	Analysis of Errors in KG Triplets
	Types of Errors
	Extracting Triplets
	Analysis of Incorrect Triplets

	Synonym Identification from Bhāvaprakāśanighaṇṭu
	Classification
	Synonym Identification

	Summary

	Sangrahaka: Annotation and Querying Tool for Knowledge Graphs
	Sangrahaka Software
	Architecture
	Workflow

	Data Format
	Corpus Format
	Query Template
	Backend
	Web Framework
	Data
	Knowledge Graph
	Natural Language Query Templates
	Configuration
	Utility Scripts

	Frontend
	Corpus Viewer Interface
	Annotator Interface
	Query Interface
	Graph Query Builder Interface
	Graph Browser Interface
	Admin Interface
	Ontology Creation
	Curation

	Fault Tolerance

	Evaluation
	Subjective Evaluation
	Objective Evaluation

	Semantic Annotation of Semi-structured Āyurveda Text
	Introduction
	Contributions
	Outline

	Motivation for Manual Annotation
	Word Segmentation
	Morphological Analysis
	Other Linguistic Tasks
	Semantic Information Extraction
	Need for Annotation

	Corpus
	Sample of Text from Dhānyavarga
	Poetry-to-Prose Conversion of Verses from ayurjnana:table:tenverses

	Ontology
	Annotation Process
	Entity Annotation
	Relation Annotation
	Unnamed Entities
	Auto-complete Suggestions
	Curation
	Equivalent Entities
	Inconsistent Node Categories
	Missing Node Categories

	Symmetric Relationships

	Querying
	Query Templates
	Query Answers

	Summary

	Antarlekhaka: Comprehensive Natural Language Annotation Tool
	Antarlekhaka Software
	Architecture
	Workflow
	Data
	Interfaces
	Sentence Boundary Detection
	Canonical Word Order
	Token Annotation
	Token Classification
	Token Graph
	Token Connection
	Sentence Classification
	Sentence Graph

	Language Independence
	Schema
	Tasks
	Ontology
	Annotations

	Pluggable Heuristics
	Export

	Evaluation

	Potential for NLP Research
	Case Study: Annotation of Vālmīki Rāmāyaṇa
	Sentence Boundary Dataset
	Canonical Word Ordering Dataset
	Named Entity Recognition Dataset
	Co-reference Resolution Dataset
	Action Graph Dataset

	Summary

	Chandojñānam: Sanskrit Meter Identification and Utilization
	Introduction
	Motivation
	Background
	Related Work
	Contributions

	The Chandojñānam System
	Chanda Definitions
	Input
	Text Processing
	Meter Identification Algorithm
	Direct Matching
	Fuzzy Matching
	Verse Processing

	Output
	Utility

	Evaluation for Error Correction
	Corpus
	Results
	Error Analysis

	Summary

	Miscellaneous Computational Tools for Sanskrit
	Jñānasaṅgrahaḥ: Computational Interfaces
	Saṅkhyāpaddhatiḥ
	Kaṭapayādi Saṅkhyā
	Āryabhaṭīya Saṅkhyā
	Bhūtasaṅkhyā

	Varṇajñānam

	Vaiyyākaraṇaḥ: A Sanskrit Grammar Bot for Telegram
	Python Libraries
	PyCDSL: A Programmatic Interface to Cologne Digital Sanskrit Dictionaries
	Heritage.py: Python Interface to The Sanskrit Heritage Site
	sanskrit-text: Sanskrit Text Utility Functions

	Summary

	Conclusions
	Key Contributions
	Future Work

	Publications
	References

