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Motivation & Research Question
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Classical Languages: Sanskrit, Ancient Greek, Latin (Milia) octona Pictonibus et Turonis et Parisiis et Helvetiis we:: fob AT SRR GAl:?
(Eight thousand each from Pictones, Turoni, Parisii, and Helvetii) (prasnah: kim nama dasarathasya stnoh?)
. (Question: What is the name of Dasaratha's son?)
* A special case of low resourced languages p N -
NER [* 'B-GRP':
 Low-resource for NLU tasks 5 { :
_ _ _ , o LLM  — ['Pictonibus’', 'Turonis', 'Parisiis', 'Helvetiis'] } QA closed-book *

« Rich ancient literature available in digitized format N y > LLM \
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High mflect.lon present a challenge | TOV &’ auTe mpooEeine Bea yAaukwmg ‘AOnvn QA RAG-BM25 <H:
* Influence high resourced languages — 28% of English vocab- (Ton d' alite proséeipe thea glaukdpis Athéné) L3 f (ramah)

ulary from Latin v LLM - J

% s ~ ﬁiz (Context):
MT : s GRRATHL: ... f
| | | LLM Him then the goddess, bright-eyed Athene, te —|(ramo dasarathatma-
Key Question: How well do LLMs generalize on Classical . answered ) jah ...)
Languages, given that there is no evidence of instruction ot \/\
tuning on these languages? etriever
\ J \ J

Experiments and Findings Results ..

Datasets: B [lama-v3pl-8b-instruct Bl gpt-4o-mini i llama-v3p1l-405b-instruct Bl gpt-do
Task Language Test Size Source ) Named Entity Recognition (b) Machine Translation to English
0.40 -
Sanskrit 139 Terdalkar (2023) 0.8 T
NER Latin 3,410 Erdmann et al. (2019) 0.35 -
Ancient Greek 4,957 Myerston (2025) 030
Sanskrit 6,464 Maheshwari et al. (2024) 0.6 -
MT Latin 1,014 Rosenthal (2023) = 0.25 -
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uc_) 1 0.20 -
QA  Sanskrit 1,501 This work g 04 - — *F =
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Key Findings: * i
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« Larger models match/exceed fine-tuned baselines 001 . . . . . . . . . . .
san san<en> lat lat<en> grc grc<en> san san<en> lat lat<en> grc grc<en>
° Significant performance gap between Iarge and small (c) Question Answering san - Overall (d) Question Answering san - Answer in Context (e) Question Answering san - Answer not in Context
models 0.8 A 0.8 A — 0.8 -
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* RAG significantly improves QA performance - , ?I o .
0.6 1 0.6 - o 5 o 0.6 - - _
— Smaller models fail to leverage context effectively ° 1
. 051 ‘ 0.5 - 0.5 - o
« English prompts outperform native language prompts 2 04- 0.41 : 0.41 : 1
— Especially true for smaller models Z 034 0.3 ! 034
— Evidence that models not instruction-tuned on classical 0.2 4 0.2 4 02"
languages o
0.1 0.1 0.11
— Implication: Performance due to cross-lingual o ° i o i
. : . 0.0 . e
generalization, not direct training. . . . . . . .
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Sanskrit QA Insights Entity Confusion in NER

RAG Performance:

Effect of K value in RAG for GP 140 (RAma (a) san gpt-4o0 (b) san llama-v3p1-405b-instruct (c) san gpt-4o0-mini (d) san llama-v3p1l-8b-instruct
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* Models handle Sanskrit inflection well o0 500 o0 500
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* Slighlty better performance with Devanagari than Roman- e z : 3
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